Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chim Acta ; 1242: 340773, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36657886

RESUMEN

Several proteins have been identified in the past decades as targets of uranyl (UO22+) in vivo. However, the molecular interactions responsible for this affinity are still poorly known which requires the identification of the UO22+ coordination sites in these proteins. Biomimetic peptides are efficient chemical tools to characterize these sites. In this work, we developed a dedicated analytical method to determine the affinity of biomimetic, synthetic, multi-phosphorylated peptides for UO22+ and evaluate the effect of several structural parameters of these peptides on this affinity at physiological pH. The analytical strategy was based on the implementation of the simultaneous coupling of hydrophilic interaction chromatography (HILIC) with electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS). An essential step had been devoted to the definition of the best separation conditions of UO22+ complexes formed with di-phosphorylated peptide isomers and also with peptides of different structure and degrees of phosphorylation. We performed the first separations of several sets of UO22+ complexes by HILIC ever reported in the literature. A dedicated method had then been developed for identifying the separated peptide complexes online by ESI-MS and simultaneously quantifying them by ICP-MS, based on uranium quantification using external calibration. Thus, the affinity of the peptides for UO22+ was determined and made it possible to demonstrate that (i) the increasing number of phosphorylated residues (pSer) promotes the affinity of the peptides for UO22+, (ii) the position of the pSer in the peptide backbone has very low impact on this affinity (iii) and finally the cyclic structure of the peptide favors the UO22+ complexation in comparison with the linear structure. These results are in agreement with those previously obtained by spectroscopic techniques, which allowed to validate the method. Through this approach, we obtained essential information to better understand the mechanisms of toxicity of UO22+ at the molecular level and to further develop selective decorporating agents by chelation.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Uranio , Biomimética , Péptidos/química , Cromatografía
2.
Neurotoxicology ; 82: 35-44, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166614

RESUMEN

Uranium exposure can lead to neurobehavioral alterations in particular of the monoaminergic system, even at non-cytotoxic concentrations. However, the mechanisms of uranium neurotoxicity after non-cytotoxic exposure are still poorly understood. In particular, imaging uranium in neurons at low intracellular concentration is still very challenging. We investigated uranium intracellular localization by means of synchrotron X-ray fluorescence imaging with high spatial resolution (< 300 nm) and high analytical sensitivity (< 1 µg.g-1 per 300 nm pixel). Neuron-like SH-SY5Y human cells differentiated into a dopaminergic phenotype were continuously exposed, for seven days, to a non-cytotoxic concentration (10 µM) of soluble natural uranyl. Cytoplasmic submicron uranium aggregates were observed accounting on average for 62 % of the intracellular uranium content. In some aggregates, uranium and iron were co-localized suggesting common metabolic pathways between uranium and iron storage. Uranium aggregates contained no calcium or phosphorous indicating that detoxification mechanisms in neuron-like cells are different from those described in bone or kidney cells. Uranium intracellular distribution was compared to fluorescently labeled organelles (lysosomes, early and late endosomes) and to fetuin-A, a high affinity uranium-binding protein. A strict correlation could not be evidenced between uranium and the labeled organelles, or with vesicles containing fetuin-A. Our results indicate a new mechanism of uranium cytoplasmic aggregation after non-cytotoxic uranyl exposure that could be involved in neuronal defense through uranium sequestration into less reactive species. The remaining soluble fraction of uranium would be responsible for protein binding and for the resulting neurotoxic effects.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Uranio/metabolismo , Línea Celular , Neuronas Dopaminérgicas/química , Humanos , Compuestos Organometálicos/metabolismo , Espectrometría por Rayos X , Sincrotrones , Uranio/análisis
3.
Chemistry ; 27(7): 2393-2401, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32955137

RESUMEN

The impact of the contamination of living organisms by actinide elements has been a constant subject of attention since the 1950s. But to date still little is understood. Ferritin is the major storage and regulation protein of iron in many organisms, it consists of a protein ring and a ferrihydric core at the center. This work sheds light on the interactions of early actinides (Th, Pu) at oxidation state +IV with ferritin and its ability to store those elements at physiological pH compared to Fe. The ferritin-thorium load curve suggests that ThIV saturates the protein (2840 Th atoms per ferritin) in a similar way that Fe does on the protein ring. Complementary spectroscopic techniques (spectrophotometry, infrared spectroscopy, and X-ray absorption spectroscopy) were combined with molecular dynamics to provide a structural model of the interaction of ThIV and PuIV with ferritin. Comparison of spectroscopic data together with MD calculations suggests that ThIV and PuIV are complexed mainly on the protein ring and not on the ferrihydric core. Indeed from XAS data, there is no evidence of Fe neighbors in the Th and Pu environments. On the other hand, carboxylates from amino acids of the protein ring and a possible additional carbonate anion are shaping the cation coordination spheres. This thorough description from a molecular view point of ThIV and PuIV interaction with ferritin, an essential iron storage protein, is a cornerstone in comprehensive nuclear toxicology.


Asunto(s)
Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Plutonio/metabolismo , Torio/metabolismo , Animales , Caballos , Plutonio/química , Torio/química
4.
Analyst ; 144(20): 5928-5933, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31490474

RESUMEN

The study of isotopic variations of endogenous and toxic metals in fluids and tissues is a recent research topic with an outstanding potential in biomedical and toxicological investigations. Most of the analyses have been performed so far in bulk samples, which can make the interpretation of results entangled, since different sources of stress or the alteration of different metabolic processes can lead to similar variations in the isotopic compositions of the elements in bulk samples. The downscaling of the isotopic analysis of elements at the sub-cellular level, is considered as a more promising alternative. Here we present for the first time the accurate determination of Cu isotopic ratios in four main protein fractions from lysates of neuron-like human cells exposed in vitro to 10 µM of natural uranium for seven days. These protein fractions were isolated by Size Exclusion Chromatography and analysed by Multi-Collector Inductively Coupled Plasma Mass Spectrometry to determine the Cu isotopic variations in each protein fraction with regard to the original cell lysate. Values obtained, expressed as δ65Cu, were -0.03 ± 0.14 ‰ (Uc, k = 2), -0.55 ± 0.20 ‰ (Uc, k = 2), -0.32 ± 0.21 ‰ (Uc, k = 2) and +0.84 ± 0.21 ‰ (Uc, k = 2) for the four fractions, satisfying the mass balance. The results obtained in this preliminary study pave the way for dedicated analytical developments to identify new specific disease biomarkers, to gain insight into stress-induced altered metabolic processes, as well as to decipher metabolic pathways of toxic elements.


Asunto(s)
Cobre/química , Isótopos/química , Neuronas/química , Neuronas/efectos de los fármacos , Proteínas/química , Uranio/farmacología , Radioisótopos de Cobre , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos , Uranio/química
5.
Arch Toxicol ; 93(8): 2141-2154, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31222525

RESUMEN

Uranium (U) is the heaviest naturally occurring element ubiquitously present in the Earth's crust. Human exposure to low levels of U is, therefore, unavoidable. Recently, several studies have clearly pointed out that the brain is a sensitive target for U, but the mechanisms leading to the observed neurological alterations are not fully known. To deepen our knowledge of the biochemical disturbances resulting from U(VI) toxicity in neuronal cells, two complementary strategies were set up to identify the proteins that selectively bind U(VI) in human dopaminergic SH-SY5Y cells. The first strategy relies on the selective capture of proteins capable of binding U(VI), using immobilized metal affinity chromatography, and starting from lysates of cells grown in a U(VI)-free medium. The second strategy is based on the separation of U-enriched protein fractions by size-exclusion chromatography, starting from lysates of U(VI)-exposed cells. High-resolution mass spectrometry helped us to highlight 269 common proteins identified as the urano-proteome. They were further analyzed to characterize their cellular localization and biological functions. Four canonical pathways, related to the protein ubiquitination system, gluconeogenesis, glycolysis, and the actin cytoskeleton proteins, were particularly emphasized due to their high content of U(VI)-bound proteins. A semi-quantification was performed to concentrate on the ten most abundant proteins, whose physico-chemical characteristics were studied in particular depth. The selective interaction of U(VI) with these proteins is an initial element of proof of the possible metabolic effects of U(VI) on neuronal cells at the molecular level.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Uranio/toxicidad , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Gluconeogénesis , Glucólisis , Humanos , Complejo de la Endopetidasa Proteasomal/fisiología , Unión Proteica , Proteómica , Uranio/metabolismo
6.
Sci Rep ; 8(1): 17163, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464301

RESUMEN

The impact of natural uranium (U) on differentiated human neuron-like cells exposed to 1, 10, 125, and 250 µM of U for seven days was assessed. In particular, the effect of the U uptake on the homeostatic modulation of several endogenous elements (Mg, P, Mn, Fe, Zn, and Cu), the U isotopic fractionation upon its incorporation by the cells and the evolution of the intracellular Cu and Zn isotopic signatures were studied. The intracellular accumulation of U was accompanied by a preferential uptake of 235U for cells exposed to 1 and 10 µM of U, whereas no significant isotopic fractionation was observed between the extra- and the intracellular media for higher exposure U concentrations. The U uptake was also found to modulate the homeostasis of Cu, Fe, and Mn for cells exposed to 125 and 250 µM of U, but the intracellular Cu isotopic signature was not modified. The intracellular Zn isotopic signature was not modified either. The activation of the non-specific U uptake pathway might be related to this homeostatic modulation. All together, these results show that isotopic and quantitative analyses of toxic and endogenous elements are powerful tools to help deciphering the toxicity mechanisms of heavy metals.


Asunto(s)
Metales/análisis , Neuronas/química , Neuronas/metabolismo , Fósforo/análisis , Uranio/metabolismo , Línea Celular , Homeostasis , Humanos
7.
Neurotoxicology ; 68: 177-188, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30076899

RESUMEN

Natural uranium is an ubiquitous element present in the environment and human exposure to low levels of uranium is unavoidable. Although the main target of acute uranium toxicity is the kidney, some concerns have been recently raised about neurological effects of chronic exposure to low levels of uranium. Only very few studies have addressed the molecular mechanisms of uranium neurotoxicity, indicating that the cholinergic and dopaminergic systems could be altered. The main objective of this study was to investigate the mechanisms of natural uranium toxicity, after 7-day continuous exposure, on terminally differentiated human SH-SY5Y cells exhibiting a dopaminergic phenotype. Cell viability was first assessed showing that uranium cytotoxicity only occurred at high exposure concentrations (> 125 µM), far from the expected values for uranium in the blood even after occupational exposure. SH-SY5Y differentiated cells were then continuously exposed to 1, 10, 125 or 250 µM of natural uranium for 7 days and uranium quantitative subcellular distribution was investigated by means of micro-PIXE (Particle Induced X-ray Emission). The subcellular element imaging revealed that uranium was located in defined perinuclear regions of the cytoplasm, suggesting its accumulation in organelles. Uranium was not detected in the nucleus of the differentiated cells. Quantitative analysis evidenced a very low intracellular uranium content at non-cytotoxic levels of exposure (1 and 10 µM). At higher levels of exposure (125 and 250 µM), when cytotoxic effects begin, a larger and disproportional intracellular accumulation of uranium was observed. Finally the expression of dopamine-related genes was quantified using real time qRT-PCR. The expression of monoamine oxidase B (MAO-B) gene was statistically significantly decreased after exposure to uranium while other dopamine-related genes were not modified. The down regulation of MAO-B was confirmed at the protein level. This original result suggests that the inhibition of dopamine catabolism, but also of other MAO-B substrates, could constitute selective effects of uranium neurotoxicity.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Monoaminooxidasa/metabolismo , Uranio/metabolismo , Uranio/toxicidad , Línea Celular Tumoral , Supervivencia Celular , Citoplasma/metabolismo , Regulación hacia Abajo , Humanos
8.
Talanta ; 178: 894-904, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136912

RESUMEN

The monitoring of isotopic fractionations in in vitro cultured human cell samples is a very promising and under-exploited tool to help identify the metabolic processes leading to disease-induced isotopic fractionations or decipher metabolic pathways of toxic metals in these samples. One of the limitations is that the analytes are often present at small amounts, ranging from tens to hundreds of ng, thus making challenging low-uncertainty isotope ratio determinations. Here we present a new procedure for U, Cu and Zn purification and isotope ratio determinations in cultured human neuron-like cells exposed to natural U. A thorough study of the influence of the limiting factors impacting the uncertainty of δ238U, δ66Zn and δ65Cu is also carried out. These factors include the signal intensity, which determines the within-day measurement reproducibility, the procedural blank correction and the matrix effects, which determine the accuracy of the mass bias correction models. Given the small Cu and U amounts in the cell samples, 15-30 and 20ng respectively, a highly efficient sample introduction system was employed in order to improve the analyte transport to the plasma and, hence, the signal intensity. With this device, the procedural blanks became the main uncertainty source of δ238U and δ65Cu values, accounting over 65% of the overall uncertainty. The matrix effects gave rise to inaccuracies in the mass bias correction models for samples finally dissolved in the minimal volumes required for the analysis, 100-150µL, leading to biases for U and Cu. We will show how these biases can be cancelled out by dissolving the samples in volumes of at least 300µL for Cu and 450µL for U. Using our procedure, expanded uncertainties (k = 2) of around 0.35‰ for δ238U and 0.15‰ for δ66Zn and δ65Cu could be obtained. The analytical approach presented in this work is also applicable to other biological microsamples and can be extended to other elements and applications.


Asunto(s)
Metales Pesados/química , Metales Pesados/metabolismo , Células Cultivadas , Cobre/química , Cobre/metabolismo , Humanos , Isótopos , Neuronas/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados , Uranio/química , Uranio/metabolismo , Zinc/química , Zinc/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(49): 14007-14012, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872304

RESUMEN

The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.


Asunto(s)
Fraccionamiento Químico/métodos , Uranio/análisis , Técnicas de Cultivo de Célula , Línea Celular/metabolismo , Humanos , Isótopos , Neuronas/metabolismo , Uranio/metabolismo
10.
Appl Spectrosc ; 59(5): 696-705, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15969817

RESUMEN

This paper describes the ability of the combination of electrospray ionization mass spectrometry (ESI-MS) and anion-exchange chromatography coupled with inductively coupled plasma atomic emission spectrometry (AEC-ICP-AES) for cobalt speciation study in the binary cobalt-cysteine system. ESI-MS, allowing the identification and the characterization of the analytes, is used as a technique complementary to AEC-ICP-AES, providing elemental information on the separated species. The methods have been developed through the study of samples containing Co2+ and 1-fold to 5-fold molar ratios of cysteine over a pH range 2.5 to 11. In each case, cobalt-cysteine complexes were characterized by ESI-MS in negative ion mode. AEC-ICP-AES allowed further separation and detection of the cobalt species previously characterized. The strong influence of pH and ligand-to-metal ratios on the nature and stoichiometry of the species is demonstrated. For the first time, a direct experimental speciation diagram of cobalt species has been established owing to these analytical techniques. This work is a promising basis for the speciation analysis of cobalt, since a good knowledge of cobalt speciation is of prime importance to better understanding its fate in biological and environmental media.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Cobalto/análisis , Cobalto/química , Cisteína/análisis , Cisteína/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrofotometría Atómica/métodos , Resinas de Intercambio Aniónico , Sitios de Unión , Sustancias Macromoleculares/análisis , Sustancias Macromoleculares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA