Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 26(10): 2418-2430, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30057240

RESUMEN

The present study was designed to characterize transduction of non-human primate brain and spinal cord with a modified adeno-associated virus serotype 2, incapable of binding to the heparan sulfate proteoglycan receptor, referred to as AAV2-HBKO. AAV2-HBKO was infused into the thalamus, intracerebroventricularly or via a combination of both intracerebroventricular and thalamic delivery. Thalamic injection of this modified vector encoding GFP resulted in widespread CNS transduction that included neurons in deep cortical layers, deep cerebellar nuclei, several subcortical regions, and motor neuron transduction in the spinal cord indicative of robust bidirectional axonal transport. Intracerebroventricular delivery similarly resulted in widespread cortical transduction, with one striking distinction that oligodendrocytes within superficial layers of the cortex were the primary cell type transduced. Robust motor neuron transduction was also observed in all levels of the spinal cord. The combination of thalamic and intracerebroventricular delivery resulted in transduction of oligodendrocytes in superficial cortical layers and neurons in deeper cortical layers. Several subcortical regions were also transduced. Our data demonstrate that AAV2-HBKO is a powerful vector for the potential treatment of a wide number of neurological disorders, and highlight that delivery route can significantly impact cellular tropism and pattern of CNS transduction.


Asunto(s)
Terapia Genética , Vectores Genéticos/efectos adversos , Neuronas/efectos de los fármacos , Parvovirinae/genética , Médula Espinal/efectos de los fármacos , Animales , Transporte Axonal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/genética , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Dependovirus , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Proteoglicanos de Heparán Sulfato/administración & dosificación , Proteoglicanos de Heparán Sulfato/genética , Humanos , Infusiones Intraventriculares , Neuronas Motoras/efectos de los fármacos , Neuronas/patología , Primates , Médula Espinal/patología , Tálamo/efectos de los fármacos
2.
Arch Toxicol ; 92(7): 2353-2367, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29785638

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) has demonstrated neurorestorative and neuroprotective effects in rodent and nonhuman primate models of Parkinson's disease. However, continuous intraputamenal infusion of GDNF (100 µg/day) resulted in multifocal cerebellar Purkinje cell loss in a 6-month toxicity study in rhesus monkeys. It was hypothesized that continuous leakage of GDNF into the cerebrospinal fluid compartment during the infusions led to down-regulation of GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF then mediated the observed cerebellar lesions. Here we present the results of a 9-month toxicity study in which rhesus monkeys received intermittent intraputamenal infusions via convection-enhanced delivery. Animals were treated with GDNF (87.1 µg; N = 14) or vehicle (N = 6) once every 4 weeks for a total of 40 weeks (11 treatments). Four of the GDNF-treated animals were utilized in a satellite study assessing the impact of concomitant catheter repositioning prior to treatment. In the main study, eight animals (5 GDNF, 3 control) were euthanized at the end of the treatment period, along with the four satellite study animals, while the remaining eight animals (5 GDNF, 3 control) were euthanized at the end of a 12-week recovery period. There were no GDNF-related adverse effects and in particular, no GDNF-related microscopic findings in the brain, spinal cord, dorsal root ganglia, or trigeminal ganglia. Therefore, 87.1 µg/4 weeks is considered the no observed adverse effect level for GDNF in rhesus monkeys receiving intermittent, convection-enhanced delivery of GDNF for 9 months.


Asunto(s)
Cerebelo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/toxicidad , Fármacos Neuroprotectores/toxicidad , Putamen/efectos de los fármacos , Animales , Convección , Esquema de Medicación , Sistemas de Liberación de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Bombas de Infusión Implantables , Macaca mulatta , Masculino , Fármacos Neuroprotectores/administración & dosificación , Nivel sin Efectos Adversos Observados , Pruebas de Toxicidad Crónica
3.
J Neurosci Methods ; 293: 347-358, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29042259

RESUMEN

BACKGROUND: In non-human primate (NHP) optogenetics, infecting large cortical areas with viral vectors is often a difficult and time-consuming task. Previous work has shown that parenchymal delivery of adeno-associated virus (AAV) in the thalamus by convection-enhanced delivery (CED) can lead to large-scale transduction via axonal transport in distal areas including cortex. We used this approach to obtain widespread cortical expression of light-sensitive ion channels. NEW METHOD: AAV vectors co-expressing channelrhodopsin-2 (ChR2) and yellow fluorescent protein (YFP) genes were infused into thalamus of three rhesus macaques under MR-guided CED. After six to twelve weeks recovery, in vivo optical stimulation and single cell recording in the cortex was carried out using an optrode in anesthetized animals. Post-mortem immunostaining against YFP was used to estimate the distribution and level of expression of ChR2 in thalamus and cortex. RESULTS: Histological analysis revealed high levels of transduction in cortical layers. The patterns of expression were consistent with known thalamo-cortico-thalamic circuits. Dense expression was seen in thalamocortiocal axonal fibers in layers III, IV and VI and in pyramidal neurons in layers V and VI, presumably corticothalamic neurons. In addition we obtained reliable in vivo light-evoked responses in cortical areas with high levels of expression. COMPARISON WITH EXISTING METHODS: Thalamic CED is very efficient in achieving large expressing areas in comparison to convectional techniques both in minimizing infusion time and in minimizing damage to the brain. CONCLUSION: MR-guided CED infusion into thalamus provides a simplified approach to transduce large cortical areas by thalamo-cortico-thalamic projections in primate brain.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/administración & dosificación , Macaca mulatta , Optogenética/métodos , Tálamo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Convección , Dermoscopía , Femenino , Imagenología Tridimensional , Inmunohistoquímica , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen por Resonancia Magnética , Masculino , Modelos Animales , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Estimulación Luminosa , Tálamo/citología , Tálamo/diagnóstico por imagen , Tálamo/fisiología
4.
J Neurosurg ; 113(2): 240-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20367078

RESUMEN

OBJECT: The purpose of this study was to optimize stereotactic coordinates for delivery of therapeutic agents into the thalamus and brainstem, using convection-enhanced delivery (CED) to avoid leakage into surrounding anatomical structures while maximizing CED of therapeutics within the target volume. METHODS: The authors recently published targeting data for the nonhuman primate putamen in which they defined infusion parameters, referred to as "red," "blue," and "green" zones, that describe cannula placements resulting in poor, suboptimal, and optimal volumes of distribution, respectively. In the present study, the authors retrospectively analyzed 22 MR images with gadoteridol as a contrast reagent, which were obtained during CED infusions into the thalamus (14 cases) and brainstem (8 cases) of nonhuman primates. RESULTS: Excellent distribution of gadoteridol within the thalamus was obtained in 8 cases and these were used to define an optimal target locus (or green zone). Good distribution in the thalamus, with variable leakage into adjacent anatomical structures, was noted in 6 cases, defining a blue zone. Quantitative containment (99.7 +/- 0.2%) of gadoteridol within the thalamus was obtained when the cannula was placed in the green zone, and less containment (85.4 +/- 3.8%) was achieved with cannula placement in the blue zone. Similarly, a green zone was also defined in the brainstem, and quantitative containment of infused gadoteridol within the brainstem was 99.4 +/- 0.6% when the cannula was placed in the green zone. These results were used to determine a set of 3D stereotactic coordinates that define an optimal site for infusions intended to cover the thalamus and brainstem of nonhuman primates. CONCLUSIONS: The present study provides quantitative analysis of cannula placement and infusate distribution using real-time MR imaging and defines an optimal zone for infusion in the nonhuman primate thalamus and brainstem. Cannula placement recommendations developed from such translational nonhuman primate studies have significant implications for the design of anticipated clinical trials featuring CED therapy into the thalamus and brainstem for CNS diseases.


Asunto(s)
Tronco Encefálico , Cateterismo/métodos , Sistemas de Liberación de Medicamentos/métodos , Técnicas Estereotáxicas , Tálamo , Animales , Medios de Contraste/farmacocinética , Sistemas de Liberación de Medicamentos/instrumentación , Femenino , Gadolinio , Compuestos Heterocíclicos/farmacocinética , Imagenología Tridimensional , Macaca fascicularis , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Modelos Animales , Compuestos Organometálicos/farmacocinética
5.
Proc Natl Acad Sci U S A ; 106(7): 2407-11, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19193857

RESUMEN

Transduction of the primate cortex with adeno-associated virus (AAV)-based gene therapy vectors has been challenging, because of the large size of the cortex. We report that a single infusion of AAV2 vector into thalamus results in widespread expression of transgene in the cortex through transduction of widely dispersed thalamocortical projections. This finding has important implications for the treatment of certain genetic and neurodegenerative diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Dependovirus/metabolismo , Terapia Genética/métodos , Enfermedades Neurodegenerativas/terapia , Animales , Vectores Genéticos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Inmunohistoquímica/métodos , Macaca mulatta , Modelos Biológicos , Modelos Genéticos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Tálamo/metabolismo , Transgenes
6.
Neuroimage ; 47 Suppl 2: T27-35, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19095069

RESUMEN

We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated viral vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of viral particles by continuous monitoring of distribution of surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus). The procedure was tolerated well by all three animals in the study. The distribution of GFP determined by immunohistochemistry in both brain regions correlated closely with distribution of GDL determined by MRI. Co-distribution was weaker with AAV2-hAADC, although in vivo PET scanning with FMT for AADC activity correlated well with immunohistochemistry of AADC. Although this is a relatively small study, it appears that AAV1 correlates better with MRI-monitored delivery than does AAV2. It seems likely that the difference in distribution may be due to differences in tissue specificity of the two serotypes.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/virología , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos , Animales , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Encéfalo/fisiología , Gadolinio , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunohistoquímica , Liposomas , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Putamen/virología , Tálamo/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA