Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 488(7409): 73-7, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22859204

RESUMEN

The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.


Asunto(s)
Efecto Invernadero/historia , Temperatura , Clima Tropical , Animales , Regiones Antárticas , Atmósfera/química , Dióxido de Carbono/análisis , Respiración de la Célula , Ecosistema , Sedimentos Geológicos/química , Historia Antigua , Actividades Humanas , Lípidos/análisis , Modelos Teóricos , Fotosíntesis , Polen , Reproducibilidad de los Resultados , Estaciones del Año , Esporas/aislamiento & purificación , Árboles/crecimiento & desarrollo
2.
PLoS One ; 7(12): e52455, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23285049

RESUMEN

Nearly all data regarding land-plant turnover across the Cretaceous/Paleogene boundary come from western North America, relatively close to the Chicxulub, Mexico impact site. Here, we present a palynological analysis of a section in Patagonia that shows a marked fall in diversity and abundance of nearly all plant groups across the K/Pg interval. Minimum diversity occurs during the earliest Danian, but only a few palynomorphs show true extinctions. The low extinction rate is similar to previous observations from New Zealand. The differing responses between the Southern and Northern hemispheres could be related to the attenuation of damage with increased distance from the impact site, to hemispheric differences in extinction severity, or to both effects. Legacy effects of the terminal Cretaceous event also provide a plausible, partial explanation for the fact that Paleocene and Eocene macrofloras from Patagonia are among the most diverse known globally. Also of great interest, earliest Danian assemblages are dominated by the gymnosperm palynomorphs Classopollis of the extinct Mesozoic conifer family Cheirolepidiaceae. The expansion of Classopollis after the boundary in Patagonia is another example of typically Mesozoic plant lineages surviving into the Cenozoic in southern Gondwanan areas, and this greatly supports previous hypotheses of high latitude southern regions as biodiversity refugia during the end-Cretaceous global crisis.


Asunto(s)
Biodiversidad , Cycadopsida/crecimiento & desarrollo , Extinción Biológica , Flores/crecimiento & desarrollo , Argentina , Geografía , Polen , Esporas , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 101(35): 12952-6, 2004 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-15282373

RESUMEN

During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism.


Asunto(s)
ADN/genética , Evolución Molecular , Mutación , Historia Natural , Ozono , Plantas/genética , Polen/genética , Esporas/genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA