Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408952

RESUMEN

Vascular remodeling is a typical feature of vascular diseases, such as atherosclerosis, aneurysms or restenosis. Excessive inflammation is a key mechanism underlying vascular remodeling via the modulation of vascular fibrosis, phenotype and function. Recent evidence suggests that not only augmented inflammation but unresolved inflammation might also contribute to different aspects of vascular diseases. Resolution of inflammation is mediated by a family of specialized pro-resolving mediators (SPMs) that limit immune cell infiltration and initiate tissue repair mechanisms. SPMs (lipoxins, resolvins, protectins, maresins) are generated from essential polyunsaturated fatty acids. Synthases and receptors for SPMs were initially described in immune cells, but they are also present in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), where they regulate processes important for vascular physiology, such as EC activation and VSMC phenotype. Evidence from genetic models targeting SPM pathways and pharmacological supplementation with SPMs have demonstrated that these mediators may play a protective role against the development of vascular remodeling in atherosclerosis, aneurysms and restenosis. This review focuses on the latest advances in understanding the role of SPMs in vascular cells and their therapeutic effects in the vascular remodeling associated with different cardiovascular diseases.


Asunto(s)
Aterosclerosis , Mediadores de Inflamación , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Eicosanoides/farmacología , Células Endoteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Remodelación Vascular
2.
Sci Rep ; 10(1): 11265, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647290

RESUMEN

Microbial detoxification has been proposed as a new alternative for removing toxins and pollutants. In this study, the biodetoxification activities of yeasts against aflatoxin B1 and zinc were evaluated by HPLC and voltammetric techniques. The strains with the best activity were also subjected to complementary assays, namely biocontrol capability and heavy-metal resistance. The results indicate that the detoxification capability is toxin- and strain-dependent and is not directly related to cell growth. Therefore, we can assume that there are some other mechanisms involved in the process, which must be studied in the future. Only 33 of the 213 strains studied were capable of removing over 50% of aflatoxin B1, Rhodotrorula mucilaginosa being the best-performing species detected. As for zinc, there were 39 strains that eliminated over 50% of the heavy metal, with Diutina rugosa showing the best results. Complementary experiments were carried out on the strains with the best detoxification activity. Biocontrol tests against mycotoxigenic moulds showed that almost 50% of strains had an inhibitory effect on growth. Additionally, 53% of the strains grew in the presence of 100 mg/L of zinc. It has been proven that yeasts can be useful tools for biodetoxification, although further experiments must be carried out in order to ascertain the mechanisms involved.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales/química , Metales Pesados/química , Levaduras/metabolismo , Aflatoxina B1/química , Cromatografía Líquida de Alta Presión , Inocuidad de los Alimentos , Pichia/metabolismo , Rhodotorula/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Aguas Residuales , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA