Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Tradicionales
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Bot ; 129(2): 171-184, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34643673

RESUMEN

BACKGROUND AND AIMS: The Arctic tundra, with its extreme temperatures and short growing season, is evolutionarily young and harbours one of the most species-poor floras on Earth. Arctic species often show little phenotypic and genetic divergence across circumpolar ranges. However, strong intraspecific post-zygotic reproductive isolation (RI) in terms of hybrid sterility has frequently evolved within selfing Arctic species of the genus Draba. Here we assess whether incipient biological species are common in the Arctic flora. METHODS: We conducted an extensive crossing experiment including six species representing four phylogenetically distant families collected across the circumpolar Arctic. We crossed conspecific parental populations representing different spatial scales, raised 740 F1 hybrids to maturity and measured fertility under laboratory conditions. We examined genetic divergence between populations for two of these species (Cardamine bellidifolia and Ranunculus pygmaeus). KEY RESULTS: In five of the six species, we find extensive reduction in pollen fertility and seed set in F1 hybrids; 219 (46 %) of the 477 F1 hybrids generated between parents separated by ≥427 km had <20 % pollen fertility. Isolation with migration (IM) and *BEAST analyses of sequences of eight nuclear genes in C. bellidifolia suggests that reproductively isolated populations of this species diverged during, or even after, the last glaciation. Likewise, Arctic populations of R. pygmaeus were genetically very similar despite exhibiting strongly reduced fertility in crosses, suggesting that RI evolved recently also in this species. CONCLUSION: We show that post-zygotic RI has developed multiple times within taxonomically recognized Arctic species belonging to several distantly related lineages, and that RI may have developed over just a few millennia. Rapid and widespread evolution of incipient biological species in the Arctic flora might be associated with frequent bottlenecks due to glacial cycles, and/or selfing mating systems, which are common in the harsh Arctic environment where pollinators are scarce.


Asunto(s)
Cardamine , Aislamiento Reproductivo , Hibridación Genética , Plantas , Polen/genética , Reproducción
2.
PLoS One ; 9(4): e93834, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24691072

RESUMEN

Crossing experiments indicate that hybrid sterility barriers frequently have developed within diploid, circumpolar plant species of the genus Draba. To gain insight into the rapid evolution of postzygotic reproductive isolation in this system, we augmented the linkage map of one of these species, D. nivalis, and searched for quantitative trait loci (QTLs) associated with reproductive isolation. The map adds 63 new dominant markers to a previously published dataset of 31 co-dominant microsatellites. These markers include 52 amplified fragment length polymorphisms (AFLPs) and 11 sequence-specific amplified polymorphisms (SSAPs) based on retrotransposon sequence. 22 markers displaying transmission ratio distortion were further included in the map. We resolved eight linkage groups with a total map length of 894 cM. Significant genotype-trait associations, or quantitative trait loci (QTL), were detected for reproductive phenotypes including pollen fertility (4 QTLs), seed set (3 QTLs), flowering time (3 QTLs) and number of flowers (4 QTLs). Observed patterns of inheritance were consistent with the influence of both nuclear-nuclear interactions and chromosomal changes on these traits. All seed set QTLs and one pollen fertility QTL displayed underdominant effects suggestive of the involvement of chromosomal rearrangements in hybrid sterility. Interestingly, D. nivalis is predominantly self-fertilizing, which may facilitate the establishment of underdominant loci and contribute to reproductive isolation.


Asunto(s)
Especiación Genética , Planta de la Mostaza/genética , Sitios de Carácter Cuantitativo/genética , Aislamiento Reproductivo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Regiones Árticas , Mapeo Cromosómico , Fertilidad/genética , Flores/genética , Repeticiones de Microsatélite/genética , Planta de la Mostaza/crecimiento & desarrollo , Polen/genética , Semillas/genética
3.
Mol Ecol ; 21(8): 1989-2003, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22590727

RESUMEN

Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the approach has never been directly compared with the traditional methods of pollen and macrofossil analysis. We conducted a comparative survey of 18 ancient permafrost samples spanning the Late Pleistocene (46-12.5 thousand years ago), from the Taymyr Peninsula in northern Siberia. The results show that pollen, macrofossils and sedaDNA are complementary rather than overlapping and, in combination, reveal more detailed information on plant palaeocommunities than can be achieved by each individual approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition and the determination of indicator species to describe environmental changes. Combining data from all three proxies reveals an area continually dominated by a mosaic vegetation of tundra-steppe, pioneer and wet-indicator plants. Such vegetational stability is unexpected, given the severe climate changes taking place in the Northern Hemisphere during this time, with changes in average annual temperatures of >22 °C. This may explain the abundance of ice-age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals the benefits of combining sedaDNA, pollen and macrofossil for palaeovegetational reconstruction and adds to the increasing evidence suggesting large areas of the Northern Hemisphere remained ecologically stable during the Late Pleistocene.


Asunto(s)
ADN de Plantas/análisis , Fósiles , Sedimentos Geológicos/química , Hielo , Polen , Ecosistema , Historia Antigua , Plantas/clasificación , Plantas/genética , Siberia
4.
Mol Ecol ; 21(8): 1980-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21951625

RESUMEN

Nunataks are isolated bedrocks protruding through ice sheets. They vary in age, but represent island environments in 'oceans' of ice through which organism dispersals and replacements can be studied over time. The J.A.D. Jensen's Nunataks at the southern Greenland ice sheet are the most isolated nunataks on the northern hemisphere - some 30 km from the nearest biological source. They constitute around 2 km(2) of ice-free land that was established in the early Holocene. We have investigated the changes in plant composition at these nunataks using both the results of surveys of the flora over the last 130 years and through reconstruction of the vegetation from the end of the Holocene Thermal Maximum (5528 ± 75 cal year BP) using meta-barcoding of plant DNA recovered from the nunatak sediments (sedaDNA). Our results show that several of the plant species detected with sedaDNA are described from earlier vegetation surveys on the nunataks (in 1878, 1967 and 2009). In 1967, a much higher biodiversity was detected than from any other of the studied periods. While this may be related to differences in sampling efforts for the oldest period, it is not the case when comparing the 1967 and 2009 levels where the botanical survey was exhaustive. As no animals and humans are found on the nunataks, this change in diversity over a period of just 42 years must relate to environmental changes probably being climate-driven. This suggests that even the flora of fairly small and isolated ice-free areas reacts quickly to a changing climate.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Fósiles , Sedimentos Geológicos/química , Cubierta de Hielo , Plantas/genética , Regiones Árticas , ADN Mitocondrial/análisis , ADN de Plantas , Groenlandia , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Hielo , Especificidad de la Especie
5.
Evolution ; 62(8): 1840-51, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18485112

RESUMEN

Sterility barriers, ranging from incomplete to fully developed, were recently demonstrated within taxonomic species of the genus Draba, suggesting the existence of numerous, cryptic biological species. Because these taxa are predominately selfers and of Pleistocene origin, it was concluded that hybrid sterility evolved quickly and possibly by genetic drift. Here we used genetic mapping and QTL analyses to determine the genetic basis of hybrid sterility between geographically distant populations of one of these taxonomic species, Draba nivalis. Fifty microsatellite loci were mapped, and QTL analyses identified five loci underlying seed fertility and two underlying pollen fertility. Four of five seed fertility QTLs reduced fertility in heterozygotes, an observation most consistent with drift-based fixation of underdominant sterility loci. However, several nuclear-nuclear interactions were also found, including two that acted like reciprocal translocations with lowest fitness in double heterozygotes, and two that had a pattern of fitness consistent with Bateson-Dobzhansky-Muller incompatibilities. In contrast, pollen fertility QTLs exhibited additive inheritance, with lowest fertility associated with the paternal allele, a pattern of inheritance suggestive of cytonuclear incompatibilities. The results imply that multiple genetic mechanisms underlie the rapid evolution of reproductive barriers in Draba.


Asunto(s)
Brassica/genética , Alelos , Evolución Biológica , Brassica/fisiología , Núcleo Celular/metabolismo , Epistasis Genética , Genes de Plantas , Ligamiento Genético , Heterocigoto , Repeticiones de Microsatélite , Modelos Biológicos , Modelos Genéticos , Fenómenos Fisiológicos de las Plantas , Polen , Sitios de Carácter Cuantitativo , Semillas/genética
6.
Mol Ecol ; 17(18): 4134-50, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19238710

RESUMEN

Norway spruce (Picea abies [L.] Karst.) is a broadly distributed European conifer tree whose history has been intensively studied by means of fossil records to infer the location of full-glacial refugia and the main routes of postglacial colonization. Here we use recently compiled fossil pollen data as a template to examine how past demographic events have influenced the species' modern genetic diversity. Variation was assessed in the mitochondrial nad1 gene containing two minisatellite regions. Among the 369 populations (4876 trees) assayed, 28 mitochondrial variants were identified. The patterns of population subdivision superimposed on interpolated fossil pollen distributions indicate that survival in separate refugia and postglacial colonization has led to significant structuring of genetic variation in the southern range of the species. The populations in the northern range, on the other hand, showed a shallow genetic structure consistent with the fossil pollen data, suggesting that the vast northern range was colonized from a single refugium. Although the genetic diversity decreased away from the putative refugia, there were large differences between different colonization routes. In the Alps, the diversity decreased over short distances, probably as a result of population bottlenecks caused by the presence of competing tree species. In northern Europe, the diversity was maintained across large areas, corroborating fossil pollen data in suggesting that colonization took place at high population densities. The genetic diversity increased north of the Carpathians, probably as a result of admixture of expanding populations from two separate refugia.


Asunto(s)
Fósiles , Genética de Población , Picea/genética , Polen/genética , ADN Mitocondrial/genética , ADN de Plantas/genética , Europa (Continente) , Evolución Molecular , Variación Genética , Geografía , Repeticiones de Minisatélite , Filogenia , Análisis de Componente Principal , Análisis de Secuencia de ADN , Árboles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA