RESUMEN
To expand the range of functional polymer materials to include fully hydrolytically degradable systems that bear bioinspired phosphorus-containing linkages both along the backbone and as cationic side chain moieties for packaging and delivery of nucleic acids, phosphonium-functionalized polyphosphoester- block-poly(l-lactide) copolymers of various compositions were synthesized, fully characterized, and their self-assembly into nanoparticles were studied. First, an alkyne-functionalized polyphosphoester- block-poly(l-lactide) copolymer was synthesized via a one pot sequential ring opening polymerization of an alkyne-functionalized phospholane monomer, followed by the addition of l-lactide to grow the second block. Second, the alkynyl side groups of the polyphosphoester block were functionalized via photoinitiated thiol-yne radical addition of a phosphonium-functionalized free thiol. The polymers of varying phosphonium substitution degrees were self-assembled in aqueous buffers to afford formation of well-defined core-shell assemblies with an average size ranging between 30 and 50 nm, as determined by dynamic light scattering. Intracellular delivery of the nanoparticles and their effects on cell viability and capability at enhancing transfection efficiency of nucleic acids (e.g., siRNA) were investigated. Cell viability assays demonstrated limited toxicity of the assembly to RAW 264.7 mouse macrophages, except at high polymer concentrations, where the polymer of high degree of phosphonium functionalization induced relatively higher cytotoxicity. Transfection efficiency was strongly affected by the phosphonium-to-phosphate (P+/P-) ratios of the polymers and siRNA, respectively. The AllStars Hs Cell Death siRNA complexed to the various copolymers at a P+/P- ratio of 10:1 induced comparable cell death to Lipofectamine. These fully degradable nanoparticles might provide biocompatible nanocarriers for therapeutic nucleic acid delivery.
Asunto(s)
Técnicas de Transferencia de Gen , Nanopartículas/química , Compuestos Organofosforados/química , Polímeros/química , Alquinos/química , Animales , Dioxanos/química , Macrófagos/efectos de los fármacos , Ratones , Nanopartículas/administración & dosificación , Fósforo/química , Polímeros/administración & dosificación , Células RAW 264.7 , Compuestos de Sulfhidrilo/químicaRESUMEN
Purpose To characterize a chemokine receptor type 2 (CCR2)-binding peptide adapted for use as a positron emission tomography (PET) radiotracer for noninvasive detection of lung inflammation in a mouse model of lung injury and in human tissues from subjects with lung disease. Materials and Methods The study was approved by institutional animal and human studies committees. Informed consent was obtained from patients. A 7-amino acid CCR2 binding peptide (extracellular loop 1 inverso [ECL1i]) was conjugated to tetraazacyclododecane tetraacetic acid (DOTA) and labeled with copper 64 (64Cu) or fluorescent dye. Lung inflammation was induced with intratracheal administration of lipopolysaccharide (LPS) in wild-type (n = 19) and CCR2-deficient (n = 4) mice, and these mice were compared with wild-type mice given control saline (n = 5) by using PET performed after intravenous injection of 64Cu-DOTA-ECL1i. Lung immune cells and those binding fluorescently labeled ECL1i in vivo were detected with flow cytometry. Lung inflammation in tissue from subjects with nondiseased lungs donated for lung transplantation (n = 11) and those with chronic obstructive pulmonary disease (COPD) who were undergoing lung transplantation (n = 16) was evaluated for CCR2 with immunostaining and autoradiography (n = 6, COPD) with 64Cu-DOTA-ECL1i. Groups were compared with analysis of variance, the Mann-Whitney U test, or the t test. Results Signal on PET images obtained in mouse lungs after injury with LPS was significantly greater than that in the saline control group (mean = 4.43% of injected dose [ID] per gram of tissue vs 0.99% of injected dose per gram of tissue; P < .001). PET signal was significantly diminished with blocking studies using nonradiolabeled ECL1i in excess (mean = 0.63% ID per gram of tissue; P < .001) and in CCR2-deficient mice (mean = 0.39% ID per gram of tissue; P < .001). The ECL1i signal was associated with an elevated level of mouse lung monocytes. COPD lung tissue displayed significantly elevated CCR2 levels compared with nondiseased tissue (median = 12.8% vs 1.2% cells per sample; P = .002), which was detected with 64Cu-DOTA-ECL1i by using autoradiography. Conclusion 64Cu-DOTA-ECL1i is a promising tool for PET-based detection of CCR2-directed inflammation in an animal model and in human tissues as a step toward clinical translation. © RSNA, 2017 Online supplemental material is available for this article.
Asunto(s)
Neumonía/diagnóstico por imagen , Neumonía/inmunología , Tomografía de Emisión de Positrones , Receptores CCR2/análisis , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones/métodosRESUMEN
Pseudomonas aeruginosa is an important bacterial pathogen, particularly as a cause of infections in hospitalised patients, immunocompromised hosts and patients with cystic fibrosis. Surveillance of nosocomial P. aeruginosa infections has revealed trends of increasing antimicrobial resistance, including carbapenem resistance and multidrug resistance. Mechanisms of antimicrobial resistance include multidrug efflux pumps, ss-lactamases and downregulation of outer membrane porins. Mechanisms of virulence include secreted toxins and the ability to form biofilms. The effective treatment of infections caused by P. aeruginosa includes prevention when possible, source control measures as necessary and prompt administration of appropriate antibacterial agents. Antibacterial de-escalation should be pursued in patients with an appropriate clinical response, especially when antibacterial susceptibilities are known. Multidrug-resistant P. aeruginosa may require treatment with less commonly used antibacterials (e.g. colistin), but newer anti-pseudomonal antibacterials are expected to be available in the near future.