Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569959

RESUMEN

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Asunto(s)
Productos Agrícolas , Monitoreo del Ambiente , Plaguicidas , Polinización , Animales , Abejas/fisiología , Plaguicidas/análisis , Polen , Malus , Exposición a Riesgos Ambientales/estadística & datos numéricos
2.
Proc Biol Sci ; 288(1951): 20210363, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34034519

RESUMEN

Emergent infectious diseases are one of the main drivers of species loss. Emergent infection with the microsporidian Nosema bombi has been implicated in the population and range declines of a suite of North American bumblebees, a group of important pollinators. Previous work has shown that phytochemicals found in pollen and nectar can negatively impact parasites in individuals, but how this relates to social epidemiology and by extension whether plants can be effectively used as pollinator disease management strategies remains unexplored. Here, we undertook a comprehensive screen of UK agri-environment scheme (AES) plants, a programme designed to benefit pollinators and wider biodiversity in agricultural settings, for phytochemicals in pollen and nectar using liquid chromatography and mass spectrometry. Caffeine, which occurs across a range of plant families, was identified in the nectar of sainfoin (Onobrychis viciifolia), a component of UK AES and a major global crop. We showed that caffeine significantly reduces N. bombi infection intensity, both prophylactically and therapeutically, in individual bumblebees (Bombus terrestris), and, for the first time, that such effects impact social epidemiology, with colonies reared from wild-caught queens having both lower prevalence and intensity of infection. Furthermore, infection prevalence was lower in foraging bumblebees from caffeine-treated colonies, suggesting a likely reduction in population-level transmission. Combined, these results show that N. bombi is less likely to be transmitted intracolonially when bumblebees consume naturally available caffeine, and that this may in turn reduce environmental prevalence. Consequently, our results demonstrate that floral phytochemicals at ecologically relevant concentrations can impact pollinator disease epidemiology and that planting strategies that increase floral abundance to support biodiversity could be co-opted as disease management tools.


Asunto(s)
Nosema , Parásitos , Animales , Abejas , Humanos , Néctar de las Plantas , Polen
3.
Curr Biol ; 29(20): 3494-3500.e5, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31607528

RESUMEN

Plant phytochemicals can act as natural "medicines" for animals against parasites [1-3]. Some nectar metabolites, for example, reduce parasite infections in bees [4-7]. Declining plant diversity through anthropogenic landscape change [8-11] could reduce the availability of medicinal nectar plants for pollinators, exacerbating their decline [12]. Existing studies are, however, limited by (1) a lack of mechanistic insights into how phytochemicals affect pollinator diseases and (2) the restriction to few, commercially available chemicals, thereby potentially neglecting plants with the biggest antiparasitic effects. To rapidly identify plants with the greatest potential as natural bee medicines, we developed a bioactivity-directed fractionation assay for nectar metabolites. We evaluated 17 important nectar plants against the bumblebee pathogen Crithidia bombi (Trypanosomatidae) [13-17]. The most bioactive species was heather (Calluna vulgaris), the second most productive UK nectar plant [10]. We identified 4-(3-oxobut-1-enylidene)-3,5,5-trimethylcyclohex-2-en-1-one (callunene) from heather nectar as a potent inhibitor of C. bombi. Wild bumblebees (Bombus terrestris) foraging on heather ingest callunene at concentrations causing complete C. bombi inhibition. Feeding on callunene was prophylactic against infections. We show that C. bombi establishes infections by flagellar anchoring to the ileum epithelium. Short-term callunene exposure induced flagellum loss in C. bombi choanomastigotes, resulting in a loss of infectivity. We conclude that plant secondary metabolites can disrupt parasite flagellum attachment, revealing a mechanism behind their prophylactic effects. The decline of heathlands [18-21] reduces the availability of natural bee "medicine" and could exacerbate the contribution of diseases to pollinator declines. VIDEO ABSTRACT.


Asunto(s)
Abejas/parasitología , Crithidia/fisiología , Flagelos/fisiología , Interacciones Huésped-Parásitos , Néctar de las Plantas/metabolismo , Animales , Polinización
4.
Infect Genet Evol ; 13: 344-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22465537

RESUMEN

Parasite evolution is increasingly being recognized as one of the most important issues in applied evolutionary biology. Understanding how parasites maximize fitness whilst facing the diverse challenges of living in cells, hosts, and vectors, is central to disease control and offers a novel testing ground for evolutionary theory. The Centre for Immunity, Infection, and Evolution at the University of Edinburgh recently held a symposium to address the question "How do parasites maximise fitness across a range of biological scales?" The symposium brought together researchers whose work looks across scales and environments to understand why and how parasites 'do what they do', tying together mechanism, evolutionary explanations, and public health implications. With a broad range of speakers, our aim was to define and encourage more holistic approaches to studying parasite evolution. Here, we present a synthesis of the current state of affairs in parasite evolution, the research presented at the symposium, and insights gained through our discussions. We demonstrate that such interdisciplinary approaches are possible and identify key areas for future progress.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Parásitos , Parásitos/fisiología , Animales , Ambiente , Carácter Cuantitativo Heredable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA