Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 133(2): 506-516, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834624

RESUMEN

Exaggerated blood pressure and diminished limb hemodynamics during exercise in patients with hypertension often are not resolved by antihypertensive medications. We hypothesized that, independent of antihypertensive medication status, dietary nitrate supplementation would increase limb blood flow, decrease mean arterial pressure (MAP), and increase limb vascular conductance during exercise in patients with hypertension. Patients with hypertension either abstained from (n = 14, Off-Meds) or continued (n = 12, On-Meds) antihypertensive medications. Within each group, patients consumed (crossover design) nitrate-rich or nitrate-depleted (placebo) beetroot juice for 3 days before performing handgrip (HG) and knee-extensor exercise (KE). Blood flow and MAP were measured using Doppler ultrasound and an automated monitor, respectively. Dietary nitrate increased plasma-[nitrite] Off-Meds and On-Meds. There were no significant effects of dietary nitrate on blood flow, MAP, or vascular conductance during HG in Off-Meds or On-Meds. For KE, dietary nitrate decreased MAP (means ± SD across all 3 exercise intensities, 118 ± 14 vs. 122 ± 14 mmHg, P = 0.024) and increased vascular conductance (26.2 ± 6.1 vs. 24.7 ± 7.0 mL/min/mmHg, P = 0.024), but did not affect blood flow for Off-Meds, with no effects On-Meds. Dietary nitrate-induced changes in blood flow (r = -0.67, P < 0.001), MAP (r = -0.43, P = 0.009), and vascular conductance (r = -0.64, P < 0.001) during KE, but only vascular conductance (r = -0.35, P = 0.039) during HG, were significantly related to the magnitude of placebo values, with no differentiation between groups. Thus, the effects of dietary nitrate on limb hemodynamics and MAP during exercise in patients with hypertension are dependent on the values at baseline, independent of antihypertensive medication status, and dependent on whether exercise was performed by the forearm or quadriceps.NEW & NOTEWORTHY Adverse hemodynamic responses to exercise in patients with hypertension, despite antihypertensive medication, indicate a sustained cardiovascular risk. The efficacy of dietary nitrate to improve limb vascular conductance during exercise was inversely dependent on the magnitude of exercising limb vascular conductance at baseline, rather than antihypertensive medication status. The effects of dietary nitrate on hemodynamics during exercise in patients with hypertension are dependent on the values at baseline and independent of antihypertensive medication status.


Asunto(s)
Suplementos Dietéticos , Hipertensión Esencial , Terapia por Ejercicio , Nitratos , Antihipertensivos , Presión Sanguínea , Estudios Cruzados , Hipertensión Esencial/dietoterapia , Hipertensión Esencial/terapia , Fuerza de la Mano/fisiología , Hemodinámica , Humanos , Músculos
2.
J Physiol ; 600(13): 3069-3081, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35593645

RESUMEN

Intramuscular hydrogen ion (H+ ) and inorganic phosphate (Pi) concentrations were dissociated during exercise to challenge their relationships with peripheral and central fatigue in vivo. Ten recreationally active, healthy men (27 ± 5 years; 180 ± 4 cm; 76 ± 10 kg) performed two consecutive intermittent isometric single-leg knee-extensor trials (60 maximal voluntary contractions; 3 s contraction, 2 s relaxation) interspersed with 5 min of rest. Phosphorus magnetic resonance spectroscopy (31 P-MRS) was used to continuously quantify intramuscular [H+ ] and [Pi] during both trials. Using electrical femoral nerve stimulation, quadriceps twitch force (Qtw ) and voluntary activation (VA) were quantified at rest and throughout both trials. Decreases in Qtw and VA from baseline were used to determine peripheral and central fatigue, respectively. Qtw was strongly related to both [H+ ] (ß coefficient: -0.9, P < 0.0001) and [Pi] (-1.1, P < 0.0001) across trials. There was an effect of trial on the relationship between Qtw and [H+ ] (-0.5, P < 0.0001), but not Qtw and [Pi] (0.0, P = 0.976). This suggests that, unlike the unaltered association with [Pi], a given level of peripheral fatigue was associated with a different [H+ ] in Trial 1 vs. Trial 2. VA was related to [H+ ] (-0.3, P < 0.0001), but not [Pi] (-0.2, P = 0.243), across trials and there was no effect of trial (-0.1, P = 0.483). Taken together, these results support intramuscular Pi as a primary cause of peripheral fatigue, and muscle acidosis, probably acting on group III/IV muscle afferents in the interstitial space, as a contributor to central fatigue during exercise. KEY POINTS: We investigated the relationship between intramuscular metabolites and neuromuscular function in humans performing two maximal, intermittent, knee-extension trials interspersed with 5 min of rest. Concomitant measurements of intramuscular hydrogen (H+ ) and inorganic phosphate (Pi) concentrations, as well as quadriceps twitch-force (Qtw ) and voluntary activation (VA), were made throughout each trial using phosphorus magnetic resonance spectroscopy (31 P-MRS) and electrical femoral nerve stimulations. Although [Pi] fully recovered prior to the onset of the second trial, [H+ ] did not. Qtw was strongly related to both [H+ ] and [Pi] across both trials. However, the relationship between Qtw and [H+ ] shifted leftward from the first to the second trial, whereas the relationship between Qtw and [Pi] remained unaltered. VA was related to [H+ ], but not [Pi], across both trials. These in vivo findings support the hypotheses of intramuscular Pi as a primary cause of peripheral fatigue, and muscle acidosis, probably acting on group III/IV muscle afferents, as a contributor to central fatigue.


Asunto(s)
Acidosis , Fosfatos , Electromiografía , Fatiga , Humanos , Masculino , Contracción Muscular , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Fósforo
3.
J Appl Physiol (1985) ; 132(3): 773-784, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35112931

RESUMEN

As a deficiency in tetrahydrobiopterin (BH4), a cofactor for endothelial nitric oxide synthase, has been implicated in the age-related decline in vascular function, this study aimed to determine the impact of acute BH4 supplementation on flow-mediated vasodilation (FMD) in old adults. Two approaches were used: 1) A multiday, double-blind, placebo-controlled, crossover design measuring, FMD [ΔFMD (mm), %FMD (%)] and shear rate area under the curve (SR AUC) in nine old subjects (73 ± 8 yr) with either placebo (placebo) or BH4 (≈10 mg/kg, post), and 2) a single experimental day measuring FMD in an additional 13 old subjects (74 ± 7 yr) prior to (pre) and 4.5 h after ingesting BH4 (≈10 mg/kg). With the first experimental approach, acute BH4 intake did not significantly alter FMD (ΔFMD: 0.17 ± 0.03 vs. 0.13 ± 0.02 mm; %FMD: 3.3 ± 0.61 vs. 2.9 ± 0.4%) or SR AUC (30,280 ± 4,428 vs. 37,877 ± 9,241 s-1) compared with placebo. Similarly, with the second approach, BH4 did not significantly alter FMD (ΔFMD: 0.09 ± 0.02 vs. 0.12 ± 0.03 mm; %FMD: 2.2 ± 0.6 vs. 2.9 ± 0.6%) or SR AUC (37,588 ± 6,753 vs. 28,996 ± 3,735 s-1) compared with pre. Moreover, when the two data sets were combined, resulting in a greater sample size, there was still no evidence of an effect of BH4 on vascular function in these old subjects. Importantly, both plasma BH4 and 7,8-dihydrobiopterin (BH2), the oxidized form of BH4, increased significantly with acute BH4 supplementation. Consequently, the ratio of BH4/BH2, recognized to impact vascular function, was unchanged. Thus, acute BH4 supplementation does not correct vascular dysfunction in the old.NEW & NOTEWORTHY Despite two different experimental approaches, acute BH4 supplementation did not affect vascular function in older adults, as measured by flow-mediated vasodilation. Plasma levels of both BH4 and BH2, the BH4 oxidized form, significantly increased after acute BH4 supplementation, resulting in an unchanged ratio of BH4/BH2, a key determining factor for endothelial nitric oxide synthase coupling. Therefore, likely due to the elevated oxidative stress with advancing age, acute BH4 supplementation does not correct vascular dysfunction in the old.


Asunto(s)
Endotelio Vascular , Óxido Nítrico Sintasa de Tipo III , Anciano , Biopterinas/análogos & derivados , Suplementos Dietéticos , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo
5.
J Appl Physiol (1985) ; 127(4): 1085-1094, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31414959

RESUMEN

Dietary inorganic nitrate (nitrate) is a promising adjunctive treatment to reduce blood pressure and improve vascular function in hypertension. However, it remains unknown if the efficacy of nitrate is dependent upon an elevated blood pressure or altered by medication in patients with hypertension. Therefore, blood pressure and vascular function, measured by passive leg movement (PLM) and flow-mediated dilation (FMD), were assessed following 3 days of placebo (nitrate-free beetroot juice) and nitrate (nitrate-rich beetroot juice) administration in 13 patients (age: 53 ± 12 yr) with hypertension taking antihypertensive medications (study 1) and in 14 patients (49 ± 13 yr) with hypertension not taking antihypertensive medications (study 2). In study 1, plasma nitrite concentration was greater for nitrate than placebo (341 ± 118 vs. 308 ± 123 nmol/L, P < 0.05), yet blood pressure and vascular function were unaltered. In study 2, plasma nitrite concentration was greater for nitrate than placebo (340 ± 102 vs. 295 ± 93 nmol/L, P < 0.01). Systolic (136 ± 16 vs. 141 ± 19 mmHg), diastolic (84 ± 13 vs. 88 ± 12 mmHg), and mean (101 ± 12 vs. 106 ± 13 mmHg) blood pressures were lower (P < 0.05), whereas the PLM change in leg vascular conductance (6.0 ± 3.0 vs. 5.1 ± 2.6 mL·min-1·mmHg-1) and FMD (6.1 ± 2.4% vs. 4.1 ± 2.7%) were greater (P < 0.05) for nitrate than placebo. The changes in systolic blood pressure (r = -0.60) and FMD (r = -0.48) induced by nitrate were inversely correlated (P < 0.05) to the respective baseline values obtained in the placebo condition. Thus, the efficacy of nitrate to improve blood pressure and vascular function in hypertension appears to be dependent on the degree of blood pressure elevation and vascular dysfunction and not antihypertensive medication status, per se.NEW & NOTEWORTHY Dietary nitrate (nitrate) is a promising intervention to improve blood pressure and vascular function in hypertension. We demonstrate that these beneficial effects of nitrate are inversely related to the baseline value in a continuous manner with no distinction between antihypertensive medication status. Thus, the efficacy of nitrate to improve blood pressure and vascular function in hypertension appears to be dependent on the degree of blood pressure elevation and vascular dysfunction and not antihypertensive mediation status.


Asunto(s)
Antihipertensivos/administración & dosificación , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Nitratos/administración & dosificación , Beta vulgaris/química , Determinación de la Presión Sanguínea/métodos , Suplementos Dietéticos , Método Doble Ciego , Femenino , Jugos de Frutas y Vegetales , Humanos , Masculino , Persona de Mediana Edad , Nitritos/administración & dosificación , Estudios Prospectivos
6.
J Appl Physiol (1985) ; 125(2): 254-262, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29722627

RESUMEN

Dietary nitrate supplementation has positive effects on mitochondrial and muscle contractile efficiency during large muscle mass exercise in humans and on skeletal muscle blood flow (Q̇) in rats. However, concurrent measurement of these effects has not been performed in humans. Therefore, we assessed the influence of nitrate supplementation on Q̇ and muscle oxygenation characteristics during moderate- (40 %peak) and severe-intensity(85% peak) handgrip exercise in a randomized, double-blind, crossover design. Nine healthy men (age: 25 ± 2 yr) completed four constant-power exercise tests (2/intensity) randomly assigned to condition [nitrate-rich (nitrate) or nitrate-poor (placebo) beetroot supplementation] and intensity (40 or 85% peak). Resting mean arterial pressure was lower after nitrate compared with placebo (84 ± 4 vs. 89 ± 4 mmHg, P < 0.01). All subjects were able to sustain 10 min of exercise at 40% peak in both conditions. Nitrate had no effect on exercise tolerance during 85% peak (nitrate: 358 ± 29; placebo: 341 ± 34 s; P = 0.3). Brachial artery Q̇ was not different after nitrate at rest or any time during exercise. Deoxygenated [hemoglobin + myoglobin] was not different for 40% peak ( P > 0.05) but was elevated throughout 85% peak ( P < 0.05) after nitrate. The metabolic cost (V̇o2) was not different at the end of exercise; however, the V̇o2 primary amplitude at the onset of exercise was elevated after nitrate for the 85% peak work rate (96 ± 20 vs. 72 ± 12 ml/min, P < 0.05) and had a faster response. These findings suggest that an acute dose of nitrate reduces resting blood pressure and speeds V̇o2 kinetics in young adults but does not augment Q̇ or reduce steady-state V̇o2 during small muscle mass handgrip exercise. NEW & NOTEWORTHY We show that acute dietary nitrate supplementation via beetroot juice increases the amplitude and speed of local muscle V̇o2 on kinetics parameters during severe- but not moderate-intensity handgrip exercise. These changes were found in the absence of an increased blood flow response, suggesting that the increased V̇o2 was attained via improvements in fractional O2 extraction and/or spatial distribution of blood flow within the exercising muscle.


Asunto(s)
Arteria Braquial/efectos de los fármacos , Tolerancia al Ejercicio/efectos de los fármacos , Fuerza de la Mano/fisiología , Músculo Esquelético/efectos de los fármacos , Nitratos/administración & dosificación , Flujo Sanguíneo Regional/efectos de los fármacos , Adulto , Animales , Presión Sanguínea/efectos de los fármacos , Arteria Braquial/metabolismo , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Prueba de Esfuerzo/métodos , Femenino , Hemoglobinas/metabolismo , Humanos , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Ratas
7.
J Physiol ; 596(12): 2301-2314, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29644702

RESUMEN

KEY POINTS: This investigation assessed the influence of group III/IV muscle afferents on small muscle mass exercise performance from a skeletal muscle bioenergetics perspective. Group III/IV muscle afferent feedback was attenuated with lumbar intrathecal fentanyl during intermittent isometric single-leg knee-extensor all-out exercise, while 31 P-MRS was used to assess skeletal muscle bioenergetics. Attenuation of group III/IV muscle afferent feedback improved exercise performance during the first minute of exercise, due to an increase in total ATP production with no change in the ATP cost of contraction. However, exercise performance was not altered during the remainder of the protocol, despite a sustained increase in total ATP production, due to an exacerbated ATP cost of contraction. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit of attenuating the muscle afferents is negated. ABSTRACT: The direct influence of group III/IV muscle afferents on exercise performance remains equivocal. Therefore, all-out intermittent isometric single-leg knee-extensor exercise and phosphorous magnetic resonance spectroscopy (31 P-MRS) were utilized to provide a high time resolution assessment of exercise performance and skeletal muscle bioenergetics in control conditions (CTRL) and with the attenuation of group III/IV muscle afferent feedback via lumbar intrathecal fentanyl (FENT). In both conditions, seven recreationally active men performed 60 maximal voluntary quadriceps contractions (MVC; 3 s contraction, 2 s relaxation), while knee-extensor force and 31 P-MRS were assessed during each MVC. The cumulative integrated force was significantly greater (8 ± 6%) in FENT than CTRL for the first minute of the all-out protocol, but was not significantly different for the second to fifth minutes. Total ATP production was significantly greater (16 ± 21%) in FENT than CTRL throughout the all-out exercise protocol, due to a significantly greater anaerobic ATP production (11 ± 13%) in FENT than CTRL with no significant difference in oxidative ATP production. The ATP cost of contraction was not significantly different between FENT and CTRL for the first minute of the all-out protocol, but was significantly greater (29 ± 34%) in FENT than in CTRL for the second to fifth minutes. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit from muscle afferent attenuation is negated.


Asunto(s)
Vías Aferentes/fisiología , Metabolismo Energético , Ejercicio Físico , Contracción Muscular , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Adenosina Trifosfato/metabolismo , Adulto , Analgésicos Opioides/administración & dosificación , Fentanilo/administración & dosificación , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos
8.
Med Sci Sports Exerc ; 49(12): 2404-2413, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28767527

RESUMEN

PURPOSE: The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation. METHODS: Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (P-MRS). RESULTS: The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min·N). CONCLUSION: Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Vías Aferentes/fisiología , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Adulto , Vías Aferentes/efectos de los fármacos , Creatina Quinasa/metabolismo , Tolerancia al Ejercicio/fisiología , Fentanilo/antagonistas & inhibidores , Fentanilo/farmacología , Glucólisis/fisiología , Humanos , Concentración de Iones de Hidrógeno , Rodilla/fisiología , Masculino , Músculo Esquelético/efectos de los fármacos , Percepción , Fosfatos/metabolismo , Fosfocreatina/metabolismo , Esfuerzo Físico/fisiología
9.
Physiol Rep ; 4(7)2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27044854

RESUMEN

N-acetylcysteine (NAC; antioxidant and thiol donor) supplementation has improved exercise performance and delayed fatigue, but the underlying mechanisms are unknown. One possibility isNACsupplementation increases limb blood flow during severe-intensity exercise. The purpose was to determine ifNACsupplementation affected exercising arm blood flow and muscle oxygenation characteristics. We hypothesized thatNACwould lead to higher limb blood flow and lower muscle deoxygenation characteristics during severe-intensity exercise. Eight healthy nonendurance trained men (21.8 ± 1.2 years) were recruited and completed two constant power handgrip exercise tests at 80% peak power until exhaustion. Subjects orally consumed either placebo (PLA) orNAC(70 mg/kg) 60 min prior to handgrip exercise. Immediately prior to exercise, venous blood samples were collected for determination of plasma redox balance. Brachial artery blood flow (BABF) was measured via Doppler ultrasound and flexor digitorum superficialis oxygenation characteristics were measured via near-infrared spectroscopy. FollowingNACsupplementaiton, plasma cysteine (NAC: 47.2 ± 20.3 µmol/L vs.PLA: 9.6 ± 1.2 µmol/L;P = 0.001) and total cysteine (NAC: 156.2 ± 33.9 µmol/L vs.PLA: 132.2 ± 16.3 µmol/L;P = 0.048) increased. Time to exhaustion was not significantly different (P = 0.55) betweenNAC(473.0 ± 62.1 sec) andPLA(438.7 ± 58.1 sec). RestingBABFwas not different (P = 0.79) withNAC(99.3 ± 31.1 mL/min) andPLA(108.3 ± 46.0 mL/min).BABFwas not different (P = 0.42) during exercise or at end-exercise (NAC: 413 ± 109 mL/min;PLA: 445 ± 147 mL/min). Deoxy-[hemoglobin+myoglobin] and total-[hemoglobin+myoglobin] were not significantly different (P = 0.73 andP = 0.54, respectively) at rest or during exercise between conditions. We conclude that acuteNACsupplementation does not alter oxygen delivery during exercise in men.


Asunto(s)
Acetilcisteína/administración & dosificación , Arteria Braquial/efectos de los fármacos , Suplementos Dietéticos , Ejercicio Físico , Fuerza de la Mano , Músculo Esquelético/efectos de los fármacos , Oxígeno/sangre , Resistencia Física/efectos de los fármacos , Administración Oral , Biomarcadores/sangre , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Arteria Braquial/diagnóstico por imagen , Arteria Braquial/fisiología , Estudios Cruzados , Método Doble Ciego , Prueba de Esfuerzo , Hemoglobinas/metabolismo , Humanos , Masculino , Fatiga Muscular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Flujo Sanguíneo Regional/efectos de los fármacos , Espectroscopía Infrarroja Corta , Factores de Tiempo , Ultrasonografía Doppler , Vasodilatación/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA