Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(42): 20947-20952, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570578

RESUMEN

Human milk fat substitute (HMFS) is a class of structured lipid that is widely used as an ingredient in infant formulas. Like human milk fat, HMFS is characterized by enrichment of palmitoyl (C16:0) groups specifically at the middle (sn-2 or ß) position on the glycerol backbone, and there is evidence that triacylglycerol (TAG) with this unusual stereoisomeric structure provides nutritional benefits. HMFS is currently made by in vitro enzyme-based catalysis because there is no appropriate biological alternative to human milk fat. Most of the fat currently used in infant formulas is obtained from plants, which exclude C16:0 from the middle position. In this study, we have modified the metabolic pathway for TAG biosynthesis in the model oilseed Arabidopsis thaliana to increase the percentage of C16:0 at the middle (vs. outer) positions by more than 20-fold (i.e., from ∼3% in wild type to >70% in our final iteration). This level of C16:0 enrichment is comparable to human milk fat. We achieved this by relocating the C16:0-specific chloroplast isoform of the enzyme lysophosphatidic acid acyltransferase (LPAT) to the endoplasmic reticulum so that it functions within the cytosolic glycerolipid biosynthetic pathway to esterify C16:0 to the middle position. We then suppressed endogenous LPAT activity to relieve competition and knocked out phosphatidylcholine:diacylglycerol cholinephosphotransferase activity to promote the flux of newly made diacylglycerol directly into TAG. Applying this technology to oilseed crops might provide a source of HMFS for infant formula.


Asunto(s)
Arabidopsis/genética , Sustitutos de Grasa/química , Grasas/química , Leche Humana/química , Aceites de Plantas/química , Semillas/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sustitutos de Grasa/metabolismo , Humanos , Fórmulas Infantiles/química , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/química , Semillas/genética , Estereoisomerismo
2.
Sci Rep ; 8(1): 17346, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478395

RESUMEN

Seeds exhibit wide variation in the fatty acid composition of their storage oil. However, the genetic basis of this variation is only partially understood. Here we have used a multi-parent advanced generation inter-cross (MAGIC) population to study the genetic control of fatty acid chain length in Arabidopsis thaliana seed oil. We mapped four quantitative trait loci (QTL) for the quantity of the major very long chain fatty acid species 11-eicosenoic acid (20:1), using multiple QTL modelling. Surprisingly, the main-effect QTL does not coincide with FATTY ACID ELONGASE 1 and a parallel genome wide association study suggested that LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE 2 (LPCAT2) is a candidate for this QTL. Regression analysis also suggested that LPCAT2 expression and 20:1 content in seeds of the 19 MAGIC founder accessions are related. LPCAT is a key component of the Lands cycle; an acyl editing pathway that enables acyl-exchange between the acyl-Coenzyme A and phosphatidylcholine precursor pools used for microsomal fatty acid elongation and desaturation, respectively. We Mendelianised the main-effect QTL using biparental chromosome segment substitution lines and carried out complementation tests to show that a single cis-acting polymorphism in the LPCAT2 promoter causes the variation in seed 20:1 content, by altering the LPCAT2 expression level and total LPCAT activity in developing siliques. Our work establishes that oilseed species exhibit natural variation in the enzymic capacity for acyl editing and this contributes to the genetic control of storage oil composition.


Asunto(s)
Arabidopsis/genética , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Semillas/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos/química , Ácidos Grasos/genética , Ácidos Grasos Monoinsaturados/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Estudio de Asociación del Genoma Completo , Aceites de Plantas/química , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Semillas/metabolismo
3.
Metab Eng ; 39: 237-246, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993560

RESUMEN

Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops.


Asunto(s)
Mejoramiento Genético/métodos , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/fisiología , Nicotiana/fisiología , Hojas de la Planta/fisiología , Aceites de Plantas/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Aceites de Plantas/aislamiento & purificación , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA