Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 18(5): e0285770, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37172030

RESUMEN

Pneumonia, always a major malady, became the main public health and economic disaster of historical proportions with the COVID-19 pandemic. This study was based on a premise that pathology of lung metabolism in inflammation may have features invariant to the nature of the underlying cause. Amino acid uptake by the lungs was measured from plasma samples collected pre-terminally from a carotid artery and vena cava in mice with bleomycin-induced lung inflammation (N = 10) and compared to controls treated with saline instillation (N = 6). In the control group, the difference in concentrations between the arterial and venous blood of the 19 amino acids measured reached the level of statistical significance only for arginine (-10.7%, p = 0.0372) and phenylalanine (+5.5%, p = 0.0266). In the bleomycin group, 11 amino acids had significantly lower concentrations in the arterial blood. Arginine concentration was decreased by 21.1% (p<0.0001) and only that of citrulline was significantly increased (by 20.1%, p = 0.0002). Global Arginine Bioavailability Ratio was decreased in arterial blood by 19.5% (p = 0.0305) in the saline group and by 30.4% (p<0.0001) in the bleomycin group. Production of nitric oxide (NO) and citrulline from arginine by the inducible nitric oxide synthase (iNOS) is greatly increased in the immune system's response to lung injury. Deprived of arginine, the endothelial cells downstream may fail to provide enough NO to prevent the activation of thrombocytes. Thrombotic-related vascular dysfunction is a defining characteristic of pneumonia, including COVID-19. This experiment lends further support to arginine replacement as adjuvant therapy in pneumonia.


Asunto(s)
COVID-19 , Neumonía , Ratones , Humanos , Animales , Arginina/metabolismo , Bleomicina/toxicidad , Células Endoteliales/metabolismo , Citrulina/metabolismo , Pandemias , COVID-19/patología , Pulmón/patología , Neumonía/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo
2.
Microbiol Spectr ; 9(3): e0173621, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34908439

RESUMEN

Although several studies have shown promising clinical outcomes of phage therapy in patients with orthopedic device-related infections, questions remain regarding the optimal application protocol, systemic effects, and the impact of the immune response. This study provides a proof-of-concept of phage therapy in a clinically relevant rabbit model of fracture-related infection (FRI) caused by Staphylococcus aureus. In a prevention setting, phage in saline (without any biomaterial-based carrier) was highly effective in the prevention of FRI, compared to systemic antibiotic prophylaxis alone. In the subsequent study involving treatment of established infection, daily administration of phage in saline through a subcutaneous access tube was compared to a single intraoperative application of a phage-loaded hydrogel and a control group receiving antibiotics only. In this setting, although a possible trend of bacterial load reduction on the implant was observed with the phage-loaded hydrogel, no superior effect of phage therapy was found compared to antibiotic treatment alone. The application of phage in saline through a subcutaneous access tube was, however, complicated by superinfection and the development of neutralizing antibodies. The latter was not found in the animals that received the phage-loaded hydrogel, which may indicate that encapsulation of phages into a carrier such as a hydrogel limits their exposure to the adaptive immune system. These studies show phage therapy can be useful in targeting orthopedic device-related infection, however, further research and improvements of these application methods are required for this complex clinical setting. IMPORTANCE Because of the growing spread of antimicrobial resistance, the use of alternative prevention and treatment strategies is gaining interest. Although the therapeutic potential of bacteriophages has been demonstrated in a number of case reports and series over the past decade, many unanswered questions remain regarding the optimal application protocol. Furthermore, a major concern during phage therapy is the induction of phage neutralizing antibodies. This study aimed at providing a proof-of-concept of phage therapy in a clinically relevant rabbit model of fracture-related infection caused by Staphylococcus aureus. Phage therapy was applied as prophylaxis in a first phase, and as treatment of an established infection in a second phase. The development of phage neutralizing antibodies was evaluated in the treatment study. This study demonstrates that phage therapy can be useful in targeting orthopedic device-related infection, especially as prophylaxis; however, further research and improvements of these application methods are required.


Asunto(s)
Antibacterianos/uso terapéutico , Fracturas Óseas/microbiología , Terapia de Fagos/métodos , Infecciones Relacionadas con Prótesis/terapia , Infecciones Estafilocócicas/terapia , Fagos de Staphylococcus/crecimiento & desarrollo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana/genética , Femenino , Fracturas Óseas/patología , Hidrogeles/uso terapéutico , Prueba de Estudio Conceptual , Infecciones Relacionadas con Prótesis/microbiología , Conejos , Infecciones Estafilocócicas/prevención & control , Fagos de Staphylococcus/inmunología , Staphylococcus aureus/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA