Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 85: 104-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26004364

RESUMEN

Cardiac dysfunction in obesity is associated with mitochondrial dysfunction, oxidative stress and altered insulin sensitivity. Whether oxidative stress directly contributes to myocardial insulin resistance remains to be determined. This study tested the hypothesis that ROS scavenging will improve mitochondrial function and insulin sensitivity in the hearts of rodent models with varying degrees of insulin resistance and hyperglycemia. The catalytic antioxidant MnTBAP was administered to the uncoupling protein-diphtheria toxin A (UCP-DTA) mouse model of insulin resistance (IR) and obesity, at early and late time points in the evolution of IR, and to db/db mice with severe obesity and type-two diabetes. Mitochondrial function was measured in saponin-permeabilized cardiac fibers. Aconitase activity and hydrogen peroxide emission were measured in isolated mitochondria. Insulin-stimulated glucose oxidation, glycolysis and fatty acid oxidation rates were measured in isolated working hearts, and 2-deoxyglucose uptake was measured in isolated cardiomyocytes. Four weeks of MnTBAP attenuated glucose intolerance in 13-week-old UCP-DTA mice but was without effect in 24-week-old UCP-DTA mice and in db/db mice. Despite the absence of improvement in the systemic metabolic milieu, MnTBAP reversed cardiac mitochondrial oxidative stress and improved mitochondrial bioenergetics by increasing ATP generation and reducing mitochondrial uncoupling in all models. MnTBAP also improved myocardial insulin mediated glucose metabolism in 13 and 24-week-old UCP-DTA mice. Pharmacological ROS scavenging improves myocardial energy metabolism and insulin responsiveness in obesity and type 2 diabetes via direct effects that might be independent of changes in systemic metabolism.


Asunto(s)
Antioxidantes/farmacología , Síndrome Metabólico/tratamiento farmacológico , Metaloporfirinas/farmacología , Mitocondrias Cardíacas/metabolismo , Animales , Antioxidantes/uso terapéutico , Evaluación Preclínica de Medicamentos , Metabolismo Energético , Ácidos Grasos/metabolismo , Homeostasis , Insulina/sangre , Resistencia a la Insulina , Síndrome Metabólico/sangre , Metaloporfirinas/uso terapéutico , Ratones Endogámicos C57BL , Ratones Obesos , Miocardio/metabolismo , Estrés Oxidativo , Transducción de Señal
2.
J Clin Invest ; 123(12): 5319-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24177427

RESUMEN

The induction of autophagy in the mammalian heart during the perinatal period is an essential adaptation required to survive early neonatal starvation; however, the mechanisms that mediate autophagy suppression once feeding is established are not known. Insulin signaling in the heart is transduced via insulin and IGF-1 receptors (IGF-1Rs). We disrupted insulin and IGF-1R signaling by generating mice with combined cardiomyocyte-specific deletion of Irs1 and Irs2. Here we show that loss of IRS signaling prevented the physiological suppression of autophagy that normally parallels the postnatal increase in circulating insulin. This resulted in unrestrained autophagy in cardiomyocytes, which contributed to myocyte loss, heart failure, and premature death. This process was ameliorated either by activation of mTOR with aa supplementation or by genetic suppression of autophagic activation. Loss of IRS1 and IRS2 signaling also increased apoptosis and precipitated mitochondrial dysfunction, which were not reduced when autophagic flux was normalized. Together, these data indicate that in addition to prosurvival signaling, insulin action in early life mediates the physiological postnatal suppression of autophagy, thereby linking nutrient sensing to postnatal cardiac development.


Asunto(s)
Autofagia , Corazón/crecimiento & desarrollo , Proteínas Sustrato del Receptor de Insulina/fisiología , Miocitos Cardíacos/metabolismo , Aminoácidos/farmacología , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/deficiencia , Autofagia/genética , Autofagia/fisiología , Beclina-1 , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Corazón Fetal/patología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Insulina/fisiología , Proteínas Sustrato del Receptor de Insulina/deficiencia , Factor I del Crecimiento Similar a la Insulina/fisiología , Ratones , Mitocondrias Cardíacas/fisiología , Fosforilación Oxidativa , Fosforilación , Procesamiento Proteico-Postraduccional , Receptor IGF Tipo 1/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA