Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Orthop Res ; 37(2): 403-411, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30480335

RESUMEN

Biomimetic proteoglycans (BPGs) have the potential to treat osteoarthritis (OA) given that these molecules mimic the structure and properties of natural proteoglycans, which are significantly reduced in OA. We examined the effects of BPGs injected into the intra-articular space in an in vivo OA rabbit knee model and evaluated the effect on histological response, joint friction, and BPG distribution and retention. Rabbits underwent ACL transection to create an arthritic state after 5 weeks. OA rabbits were treated with BPGs or Euflexxa® (hyaluronic acid) intra-articular injections. Non-OA rabbits were injected similarly with BPGs; contralateral joints served as controls. The progression of OA and response to injections were evaluated using Mankin and gross grading systems indicating that mild OA was achieved in operated joints. The coefficient of friction (COF) of the intact knee joints were measured using a custom pendulum friction apparatus, showing that OA joints and OA + Euflexxa® joints demonstrated increased COF than non-operated controls, while BPG-injected non-OA and OA + BPGs were not significantly different from non-OA controls. Injected fluorescently labeled BPGs demonstrated that BPGs diffused into cartilage with localization in the pericellular region. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:403-411, 2019.


Asunto(s)
Osteoartritis de la Rodilla/tratamiento farmacológico , Proteoglicanos/uso terapéutico , Animales , Materiales Biomiméticos , Cartílago Articular/patología , Evaluación Preclínica de Medicamentos , Femenino , Colorantes Fluorescentes , Fricción/efectos de los fármacos , Osteoartritis de la Rodilla/patología , Proteoglicanos/farmacología , Conejos
2.
Genetics ; 207(4): 1501-1518, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29061647

RESUMEN

Pyridoxine-dependent epilepsy (PDE) is a rare disease characterized by mutations in the lysine degradation gene ALDH7A1 leading to recurrent neonatal seizures, which are uniquely alleviated by high doses of pyridoxine or pyridoxal 5'-phosphate (vitamin B6 vitamers). Despite treatment, neurodevelopmental disabilities are still observed in most PDE patients underlining the need for adjunct therapies. Over 60 years after the initial description of PDE, we report the first animal model for this disease: an aldh7a1-null zebrafish (Danio rerio) displaying deficient lysine metabolism and spontaneous and recurrent seizures in the larval stage (10 days postfertilization). Epileptiform electrographic activity was observed uniquely in mutants as a series of population bursts in tectal recordings. Remarkably, as is the case in human PDE, the seizures show an almost immediate sensitivity to pyridoxine and pyridoxal 5'-phosphate, with a resulting extension of the life span. Lysine supplementation aggravates the phenotype, inducing earlier seizure onset and death. By using mass spectrometry techniques, we further explored the metabolic effect of aldh7a1 knockout. Impaired lysine degradation with accumulation of PDE biomarkers, B6 deficiency, and low γ-aminobutyric acid levels were observed in the aldh7a1-/- larvae, which may play a significant role in the seizure phenotype and PDE pathogenesis. This novel model provides valuable insights into PDE pathophysiology; further research may offer new opportunities for drug discovery to control seizure activity and improve neurodevelopmental outcomes for PDE.


Asunto(s)
Aldehído Deshidrogenasa/genética , Epilepsia/genética , Lisina/metabolismo , Convulsiones/genética , Aldehído Deshidrogenasa/deficiencia , Animales , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Epilepsia/fisiopatología , Técnicas de Inactivación de Genes , Humanos , Lisina/deficiencia , Mutación , Piridoxina/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Vitamina B 6/genética , Vitamina B 6/metabolismo , Pez Cebra/genética , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA