Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 139: 106744, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517158

RESUMEN

In this study, an extract of the leaves of Eremophila clarkei Oldfield & F.Muell. showed protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with an IC50 value of 33.0 µg/mL. The extract was therefore investigated by high-resolution PTP1B inhibition profiling to pinpoint the constituents responsible for the activity. Subsequent isolation and purification using analytical-scale HPLC led to identification of eight previously undescribed decipiene diterpenoids, eremoclarkanes A-H, as well as eremoclarkic acid, a biogenetically related new phenolic acid. In addition, one known decipiene diterpenoid and ten known O-methylated flavonoids were isolated. The structures of the isolated compounds were elucidated by extensive analysis of their HRMS and 1D and 2D NMR spectra. The absolute configuration of decipiene diterpenoids was determined by comparison of experimental and calculated ECD spectra. The flavonoid hispidulin (2b) and the four decipiene diterpenoids 13a, 13b, 13f, and 14b exhibited PTP1B inhibitory activity with IC50 values ranging from 22.8 to 33.6 µM. This is the first report of PTP1B inhibitory activity of decipienes, and enzyme kinetics revealed that 13a and 13b are competitive inhibitors of PTP1B, whereas 13f and 14b displayed mixed-type-mode inhibition of PTP1B. Finally, molecular docking indicated that 13a, 13b, 13f, and 14b showed comparable binding affinity towards the active and/or allosteric site of PTP1B enzyme. Structure-activity relationship (SAR) of the identified O-methylated flavonoids and decipiene diterpenoids towards PTP1B is discussed. Plausible enzymatic and photochemically driven routes for the formation of the decipienes and conversion products thereof are presented and discussed.


Asunto(s)
Diterpenos , Extractos Vegetales , Simulación del Acoplamiento Molecular , Cinética , Extractos Vegetales/química , Flavonoides , Diterpenos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Inhibidores Enzimáticos/química
2.
Phytochemistry ; 203: 113408, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36063865

RESUMEN

The plant genus Eremophila is endemic to Australia and widespread in arid regions. Root bark extract of Eremophila longifolia (R.Br.) F.Muell. (Scrophulariaceae) was investigated by LC-PDA-HRMS, and dereplication suggested the presence of a series of diterpenoids. Using a combination of preparative- and analytical-scale HPLC separation as well as extensive 1D and 2D NMR analysis, the structures of 12 hitherto unreported serrulatane diterpenoids, eremolongine A-L, were established. These structures included serrulatanes with unusual side chain modifications to form hitherto unseen skeletons with, e.g., cyclopentane, oxepane, and bicyclic hexahydro-1H-cyclopenta[c]furan moieties. Serrulatane diterpenoids in Eremophila have recently been shown to originate from a common biosynthetic precursor with conserved stereochemical configuration, and this was used for tentative assignment of the relative and absolute configuration of the isolated compounds. Triple high-resolution α-glucosidase/α-amylase/PTP1B inhibition profiling demonstrated that several of the eremolongines had weak inhibitory activity towards targets important for management of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diterpenos , Scrophulariaceae , Ciclopentanos , Diterpenos/farmacología , Furanos/química , Corteza de la Planta , Extractos Vegetales/química , Scrophulariaceae/química , alfa-Amilasas , alfa-Glucosidasas
3.
Phytochemistry ; 196: 113072, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34973506

RESUMEN

Eremophila (Scrophulariaceae) is a genus of Australian desert plants, which have been used by Australian Aboriginal people for various medicinal purposes. Crude extracts of the leaf resin of Eremophila glabra (R.Br.) Ostenf. showed α-glucosidase and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with IC50 values of 19.3 ± 1.2 µg/mL and 11.8 ± 2.1 µg/mL, respectively. Dual α-glucosidase/PTP1B high-resolution inhibition profiling combined with HPLC-PDA-HRMS and NMR were used to isolate and identify the compounds providing these activities. This resulted in isolation of seven undescribed serrulatane diterpenoids, eremoglabrane A-G, together with nine previously identified serrulatane diterpenoids and flavonoids. Three of the serrulatane diterpenoids showed PTP1B inhibitory activities with IC50 values from 63.8 ± 5.8 µM to 104.5 ± 25.9 µM.


Asunto(s)
Diterpenos , Scrophulariaceae , Australia , Diterpenos/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Scrophulariaceae/química
4.
Plant J ; 108(2): 555-578, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34324744

RESUMEN

Eremophila is the largest genus in the plant tribe Myoporeae (Scrophulariaceae) and exhibits incredible morphological diversity across the Australian continent. The Australian Aboriginal Peoples recognize many Eremophila species as important sources of traditional medicine, the most frequently used plant parts being the leaves. Recent phylogenetic studies have revealed complex evolutionary relationships between Eremophila and related genera in the tribe. Unique and structurally diverse metabolites, particularly diterpenoids, are also a feature of plants in this group. To assess the full dimension of the chemical space of the tribe Myoporeae, we investigated the metabolite diversity in a chemo-evolutionary framework applying a combination of molecular phylogenetic and state-of-the-art computational metabolomics tools to build a dataset involving leaf samples from a total of 291 specimens of Eremophila and allied genera. The chemo-evolutionary relationships are expounded into a systematic context by integration of information about leaf morphology (resin and hairiness), environmental factors (pollination and geographical distribution), and medicinal properties (traditional medicinal uses and antibacterial studies), augmenting our understanding of complex interactions in biological systems.


Asunto(s)
Evolución Biológica , Eremophila (Planta)/química , Eremophila (Planta)/fisiología , Adaptación Biológica , Antibacterianos/química , Antibacterianos/farmacología , Australia , Diterpenos/química , Medicina Tradicional , Metabolómica/métodos , Myoporaceae/química , Myoporaceae/fisiología , Fitoquímicos/química , Fitoquímicos/farmacología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Polinización , Resinas de Plantas/química
5.
J Nat Prod ; 83(5): 1598-1610, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32255628

RESUMEN

Ten new branched-chain fatty acid (BCFA) dimers with a substituted cyclohexene structure, five new monomers, and two known monomers, (2E,4Z,6E)-5-(acetoxymethyl)tetradeca-2,4,6-trienoic acid and its 5-hydroxymethyl analogue, were identified in the leaf extract of Eremophila oppositifolia subsp. angustifolia using a combination of HPLC-PDA-HRMS-SPE-NMR analysis and semipreparative-scale HPLC. The dimers could be classified as three types of Diels-Alder reaction products formed between monomers at two different sites of unsaturation of the dienophile. Two of the monomers represent potential biosynthetic intermediates of branched-chain fatty acids. Several compounds were found by high-resolution bioactivity profiling to inhibit PTP1B and were purified subsequently by semipreparative-scale HPLC. The dimers were generally more potent than the monomers with IC50 values ranging from 2 to 66 µM, compared to 38-484 µM for the monomers. The ten fatty acid dimers represent both a novel class of compounds and a novel class of PTP1B inhibitors.


Asunto(s)
Hipoglucemiantes/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Scrophulariaceae/química , Cromatografía Líquida de Alta Presión , Ácidos Grasos , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/metabolismo , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Extracción en Fase Sólida , alfa-Glucosidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA