Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
STAR Protoc ; 2(2): 100589, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34159322

RESUMEN

Here, we present an in-depth protocol for extracting ribosome-bound mRNAs in low-abundance cells of hypothalamic nuclei. mRNAs are extracted from the micropunched tissue using refined translating ribosome affinity purification. Isolated RNAs can be used for sequencing or transcript quantification. This protocol enables the identification of actively translated mRNAs in varying physiological states and can be modified for use in any neuronal subpopulation labeled with a ribo-tag. We use leptin receptor-expressing neurons as an example to illustrate the protocol. For complete details on the use and execution of this protocol, please refer to Han et al. (2020).


Asunto(s)
Cromatografía de Afinidad/métodos , Hipotálamo/metabolismo , ARN Mensajero/aislamiento & purificación , Ribosomas/metabolismo , Animales , Proteínas Fluorescentes Verdes/genética , Ratones , Neuronas/metabolismo , ARN Mensajero/metabolismo
2.
Elife ; 82019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30946012

RESUMEN

The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Estradiol induces negative feedback on pulsatile GnRH/luteinizing hormone (LH) release and positive feedback generating preovulatory GnRH/LH surges. Negative and positive feedbacks are postulated to be mediated by kisspeptin neurons in arcuate and anteroventral periventricular (AVPV) nuclei, respectively. Kisspeptin-specific ERα knockout mice exhibit disrupted LH pulses and surges. This knockout approach is neither location-specific nor temporally controlled. We utilized CRISPR-Cas9 to disrupt ERα in adulthood. Mice with ERα disruption in AVPV kisspeptin neurons have typical reproductive cycles but blunted LH surges, associated with decreased excitability of these neurons. Mice with ERα knocked down in arcuate kisspeptin neurons showed disrupted cyclicity, associated with increased glutamatergic transmission to these neurons. These observations suggest that activational effects of estradiol regulate surge generation and maintain cyclicity through AVPV and arcuate kisspeptin neurons, respectively, independent from its role in the development of hypothalamic kisspeptin neurons or puberty onset.


Asunto(s)
Hipotálamo/fisiología , Neuronas/fisiología , Reproducción , Conducta Sexual Animal , Animales , Estradiol/metabolismo , Receptor alfa de Estrógeno/deficiencia , Femenino , Técnicas de Inactivación de Genes , Kisspeptinas/análisis , Ratones Noqueados , Neuronas/química
3.
Endocrinology ; 159(4): 1922-1940, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522155

RESUMEN

Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.


Asunto(s)
Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Animales , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Análisis de Secuencia de ARN
4.
J Neurosci ; 38(5): 1061-1072, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29114074

RESUMEN

Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol.SIGNIFICANCE STATEMENT The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and in vivo hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.


Asunto(s)
Estradiol/farmacología , Glutamatos/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Kisspeptinas/fisiología , Neuronas/fisiología , Receptores de Estrógenos/efectos de los fármacos , Transmisión Sináptica/fisiología , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Dinorfinas/farmacología , Femenino , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Hipotálamo/efectos de los fármacos , Hormona Luteinizante/fisiología , Ratones , Núcleos Talámicos de la Línea Media/fisiología , Neuronas/efectos de los fármacos , Hipófisis/efectos de los fármacos , Hipófisis/fisiología , Proestro/fisiología , Receptores Ionotrópicos de Glutamato/efectos de los fármacos , Receptores Ionotrópicos de Glutamato/fisiología , Transmisión Sináptica/efectos de los fármacos , Receptor Relacionado con Estrógeno ERRalfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA