Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci Methods ; 309: 132-142, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30189284

RESUMEN

BACKGROUND: Epilepsy affects around 1% of people, but existing antiepileptic drugs (AEDs) only offer symptomatic relief and are ineffective in approximately 30% of patients. Hence, new AEDs are sorely needed. However, a major bottleneck is the low-throughput nature of early-stage AED screens in conventional rodent models. This process could potentially be expedited by using simpler invertebrate systems, such as the nematode Caenorhabditis elegans. NEW METHOD: Head-bobbing convulsions were previously reported to be inducible by pentylenetetrazol (PTZ) in C. elegans with loss-of-function mutations in unc-49, which encodes a GABAA receptor. Given that epilepsy-linked mutations in human GABAA receptors are well documented, this could represent a clinically-relevant system for early-stage AED screens. However, the original agar plate-based assay is unsuited to large-scale screening and has not been validated for identifying AEDs. Therefore, we established an alternative streamlined, higher-throughput approach whereby mutants were treated with PTZ and AEDs via liquid-based incubation. RESULTS: Convulsions induced within minutes of PTZ exposure in unc-49 mutants were strongly inhibited by the established AED ethosuximide. This protective activity was independent of ethosuximide's suggested target, the T-type calcium channel, as a null mutation in the worm cca-1 ortholog did not affect ethosuximide's anticonvulsant action. COMPARISON WITH EXISTING METHOD: Our streamlined assay is AED-validated, feasible for higher throughput compound screens, and can facilitate insights into AED mechanisms of action. CONCLUSIONS: Based on an epilepsy-associated genetic background, this C. elegans unc-49 model of seizure-like activity presents an ethical, higher throughput alternative to conventional rodent seizure models for initial AED screens.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Convulsiones/prevención & control , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Convulsivantes/administración & dosificación , Etosuximida/administración & dosificación , Pentilenotetrazol/administración & dosificación , Receptores de GABA-A/genética , Convulsiones/inducido químicamente
2.
Biochemistry ; 53(38): 6052-62, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25188201

RESUMEN

In neurons, entry of extracellular calcium (Ca(2+)) into synaptic terminals through Cav2.1 (P/Q-type) Ca(2+) channels is the driving force for exocytosis of neurotransmitter-containing synaptic vesicles. This class of Ca(2+) channel is, therefore, pivotal during normal neurotransmission in higher organisms. In response to channel opening and Ca(2+) influx, specific Ca(2+)-binding proteins associate with cytoplasmic regulatory domains of the P/Q channel to modulate subsequent channel opening. Channel modulation in this way influences synaptic plasticity with consequences for higher-level processes such as learning and memory acquisition. The ubiquitous Ca(2+)-sensing protein calmodulin (CaM) regulates the activity of all types of mammalian voltage-gated Ca(2+) channels, including the P/Q class, by direct binding to specific regulatory motifs. More recently, experimental evidence has highlighted a role for additional Ca(2+)-binding proteins, particularly of the CaBP and NCS families in the regulation of P/Q channels. NCS-1 is a protein found from yeast to humans and that regulates a diverse number of cellular functions. Physiological and genetic evidence indicates that NCS-1 regulates P/Q channel activity, including calcium-dependent facilitation, although a direct physical association between the proteins has yet to be demonstrated. In this study, we aimed to determine if there is a direct interaction between NCS-1 and the C-terminal cytoplasmic tail of the Cav2.1 α-subunit. Using distinct but complementary approaches, including in vitro binding of bacterially expressed recombinant proteins, fluorescence spectrophotometry, isothermal titration calorimetry, nuclear magnetic resonance, and expression of fluorescently tagged proteins in mammalian cells, we show direct binding and demonstrate that CaM can compete for it. We speculate about how NCS-1/Cav2.1 association might add to the complexity of calcium channel regulation mediated by other known calcium-sensing proteins and how this might help to fine-tune neurotransmission in the mammalian central nervous system.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo N/química , Clonación Molecular , Humanos , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Unión Proteica
3.
Hum Mol Genet ; 23(22): 5916-27, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24947438

RESUMEN

Adult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission. Mutant dnj-14 worms also exhibited age-dependent neurodegeneration of sensory neurons, which was preceded by severe progressive chemosensory defects. A focussed chemical screen revealed that resveratrol could ameliorate dnj-14 mutant phenotypes, an effect mimicked by the cAMP phosphodiesterase inhibitor, rolipram. In contrast to other worm neurodegeneration models, activation of the Sirtuin, SIR-2.1, was not required, as sir-2.1; dnj-14 double mutants showed full lifespan rescue by resveratrol. The Sirtuin-independent neuroprotective action of resveratrol revealed here suggests potential therapeutic applications for ANCL and possibly other human neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Sirtuinas/metabolismo , Estilbenos/farmacología , Adulto , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Evaluación Preclínica de Medicamentos , Proteínas del Choque Térmico HSP40/genética , Humanos , Esperanza de Vida , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Resveratrol , Sirtuinas/genética
4.
Biochem J ; 391(Pt 2): 231-8, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16053445

RESUMEN

Many proteins are associated with intracellular membranes due to their N-terminal myristoylation. Not all myristoylated proteins have the same localization within cells, indicating that other factors must determine their membrane targeting. The NCS (neuronal calcium sensor) proteins are a family of Ca2+-binding proteins with diverse functions. Most members of the family are N-terminally myristoylated and are either constitutively membrane-bound or have a Ca2+/myristoyl switch that allows their reversible membrane association in response to Ca2+ signals. In the case of hippocalcin and NCS-1, or alternatively KChIP1 (K+ channel-interacting protein 1), their N-terminal myristoylation motifs are sufficient for targeting to distinct organelles. We have shown that an N-terminal myristoylated hippocalcin peptide is able to specifically reproduce the membrane targeting of hippocalcin/NCS-1 when introduced into permeabilized cells. The peptide binds to liposomes containing phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] with high affinity (K(d) 50 nM). Full-length hippocalcin also bound preferentially to liposomes supplemented with PtdIns(4,5)P2. Co-expression of hippocalcin-(1-14)-ECFP (enhanced cyan fluorescent protein) or NCS-1-ECFP partially displaced the expressed PH (pleckstrin homology) domain of phospholipase delta1 from the plasma membrane in live cells, indicating that they have a higher affinity for PtdIns(4,5)P2 than does this PH domain. The Golgi localization of the PH domain of FAPP1 (four-phosphate-adaptor protein 1), which binds to phosphatidylinositol 4-phosphate, was unaffected. The localization of NCS-1 and hippocalcin is likely to be determined, therefore, by their interaction with PtdIns(4,5)P2.


Asunto(s)
Hipocalcina/química , Hipocalcina/metabolismo , Ácido Mirístico/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Unión al Calcio/metabolismo , Supervivencia Celular , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Células HeLa , Hipocalcina/genética , Humanos , Liposomas/metabolismo , Proteínas Sensoras del Calcio Neuronal , Neuropéptidos/metabolismo , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA