Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Brain Mapp ; 43(1): 352-372, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34498337

RESUMEN

Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.


Asunto(s)
Amígdala del Cerebelo/patología , Cuerpo Estriado/patología , Hipocampo/patología , Neuroimagen , Esquizofrenia/patología , Tálamo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Estudios Multicéntricos como Asunto , Esquizofrenia/diagnóstico por imagen , Tálamo/diagnóstico por imagen
2.
Psychophysiology ; 54(8): 1110-1127, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28421620

RESUMEN

Although the 40 Hz auditory steady-state response (ASSR) is of clinical interest, the construct validity of EEG and MEG measures of 40 Hz ASSR cortical microcircuits is unclear. This study evaluated several MEG and EEG metrics by leveraging findings of (a) an association between the 40 Hz ASSR and age in the left but not right hemisphere, and (b) right- > left-hemisphere differences in the strength of the 40 Hz ASSR. The contention is that, if an analysis method does not demonstrate a left 40 Hz ASSR and age relationship or hemisphere differences, then the obtained measures likely have low validity. Fifty-three adults were presented 500 Hz stimuli modulated at 40 Hz while MEG and EEG were collected. ASSR activity was examined as a function of phase similarity (intertrial coherence) and percent change from baseline (total power). A variety of head models (spherical and realistic) and a variety of dipole source modeling strategies (dipole source localization and dipoles fixed to Heschl's gyri) were compared. Several sensor analysis strategies were also tested. EEG sensor measures failed to detect left 40 Hz ASSR and age associations or hemisphere differences. A comparison of MEG and EEG head-source models showed similarity in the 40 Hz ASSR measures and in estimating age and left 40 Hz ASSR associations, indicating good construct validity across models. Given a goal of measuring the 40 Hz ASSR cortical microcircuits, a source-modeling approach was shown to be superior in measuring this construct versus methods that rely on EEG sensor measures.


Asunto(s)
Corteza Auditiva/fisiología , Electroencefalografía/métodos , Potenciales Evocados Auditivos/fisiología , Magnetoencefalografía/métodos , Estimulación Acústica , Adulto , Femenino , Lateralidad Funcional/fisiología , Humanos , Masculino , Persona de Mediana Edad
3.
Neuroimage ; 97: 117-26, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24736181

RESUMEN

Although a number of recent studies have examined functional connectivity at rest, few have assessed differences between connectivity both during rest and across active task paradigms. Therefore, the question of whether cortical connectivity patterns remain stable or change with task engagement continues to be unaddressed. We collected multi-scan fMRI data on healthy controls (N=53) and schizophrenia patients (N=42) during rest and across paradigms arranged hierarchically by sensory load. We measured functional network connectivity among 45 non-artifactual distinct brain networks. Then, we applied a novel analysis to assess cross paradigm connectivity patterns applied to healthy controls and patients with schizophrenia. To detect these patterns, we fit a group by task full factorial ANOVA model to the group average functional network connectivity values. Our approach identified both stable (static effects) and state-based differences (dynamic effects) in brain connectivity providing a better understanding of how individuals' reactions to simple sensory stimuli are conditioned by the context within which they are presented. Our findings suggest that not all group differences observed during rest are detectable in other cognitive states. In addition, the stable differences of heightened connectivity between multiple brain areas with thalamus across tasks underscore the importance of the thalamus as a gateway to sensory input and provide new insight into schizophrenia.


Asunto(s)
Vías Nerviosas/fisiopatología , Descanso/fisiología , Esquizofrenia/fisiopatología , Sensación/fisiología , Lóbulo Temporal/fisiopatología , Tálamo/fisiopatología , Estimulación Acústica , Adolescente , Adulto , Anciano , Percepción Auditiva/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Psicología del Esquizofrénico , Filtrado Sensorial/fisiología , Adulto Joven
4.
Hum Brain Mapp ; 34(9): 2302-12, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22461278

RESUMEN

The cortical (auditory and prefrontal) and/or subcortical (thalamic and hippocampal) generators of abnormal electrophysiological responses during sensory gating remain actively debated in the schizophrenia literature. Functional magnetic resonance imaging has the spatial resolution for disambiguating deep or simultaneous sources but has been relatively under-utilized to investigate generators of the gating response. Thirty patients with chronic schizophrenia (SP) and 30 matched controls participated in the current experiment. Hemodynamic response functions (HRFs) for single (S1) and pairs (S1 + S2) of identical ("gating-out" redundant information) or nonidentical ("gating-in" novel information) tones were generated through deconvolution. Increased or prolonged activation for patients in conjunction with deactivation for controls was observed within auditory cortex, prefrontal cortex, and thalamus in response to single tones during the late hemodynamic response, and these group differences were not associated with clinical or cognitive symptomatology. Although patient hyperactivation to paired-tones conditions was present in several regions of interest, the effects were not statistically significant for either the gating-out or gating-in conditions. Finally, abnormalities in the postundershoot of the auditory HRF were also observed for both single and paired-tones conditions in patients. In conclusion, the amalgamation of the entire electrophysiological response to both S1 and S2 stimuli may limit hemodynamic sensitivity to paired tones during sensory gating, which may be more readily overcome by paradigms that use multiple stimuli rather than pairs. Patient hyperactivation following single tones is suggestive of deficits in basic inhibition, neurovascular abnormalities, or a combination of both factors.


Asunto(s)
Encéfalo/fisiopatología , Hemodinámica/fisiología , Esquizofrenia/fisiopatología , Filtrado Sensorial/fisiología , Estimulación Acústica , Adulto , Encéfalo/irrigación sanguínea , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino
5.
Neurochem Int ; 61(1): 128-31, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22522288

RESUMEN

BACKGROUND: Proton magnetic resonance spectroscopy ((1)H-MRS) clinical studies of patients with schizophrenia document prefrontal N-acetylaspartate (NAA) reductions, suggesting an effect of the disease or of antipsychotic medications. We studied in the rat the effect of prolonged exposure to a low-dose of the NMDA glutamate receptor antagonist phencyclidine (PCP) on levels of NAA, glutamate and glutamine in several brain regions where metabolite reductions have been reported in chronically medicated patients with schizophrenia. METHODS: Two groups of ten rats each were treated with PCP (2.58 mg/kg/day) or vehicle and were sacrificed after 1 month treatment. Concentrations of neurochemicals were determined with high resolution magic angle (HR-MAS) (1)H-MRS at 11.7 T in ex vivo punch biopsies from the medial frontal and cingulate cortex, striatum, nucleus accumbens, amygdala and ventral hippocampus. RESULTS: PCP treatment reduced NAA, glutamate, glycine, aspartate, creatine, lactate and GABA in medial frontal cortex. In the nucleus accumbens, PCP reduced levels of NAA, aspartate and glycine; similarly aspartate and glycine were reduced in the striatum. Finally the amygdala and hippocampus had elevations in glutamine and choline, respectively. CONCLUSIONS: Low-dose PCP in rats models prefrontal NAA and glutamate reductions documented in chronically-ill schizophrenia patients. Chronic glutamate NMDA receptor blockade in rats replicates an endophenotype in schizophrenia and may contribute to the prefrontal hypometabolic state in schizophrenia.


Asunto(s)
Lóbulo Frontal/efectos de los fármacos , Espectroscopía de Resonancia Magnética/métodos , Fenciclidina/farmacología , Animales , Lóbulo Frontal/metabolismo , Fenciclidina/administración & dosificación , Ratas
6.
Neuropsychologia ; 49(12): 3178-87, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21807011

RESUMEN

In real-world settings, information from multiple sensory modalities is combined to form a complete, behaviorally salient percept - a process known as multisensory integration. While deficits in auditory and visual processing are often observed in schizophrenia, little is known about how multisensory integration is affected by the disorder. The present study examined auditory, visual, and combined audio-visual processing in schizophrenia patients using high-density electrical mapping. An ecologically relevant task was used to compare unisensory and multisensory evoked potentials from schizophrenia patients to potentials from healthy normal volunteers. Analysis of unisensory responses revealed a large decrease in the N100 component of the auditory-evoked potential, as well as early differences in the visual-evoked components in the schizophrenia group. Differences in early evoked responses to multisensory stimuli were also detected. Multisensory facilitation was assessed by comparing the sum of auditory and visual evoked responses to the audio-visual evoked response. Schizophrenia patients showed a significantly greater absolute magnitude response to audio-visual stimuli than to summed unisensory stimuli when compared to healthy volunteers, indicating significantly greater multisensory facilitation in the patient group. Behavioral responses also indicated increased facilitation from multisensory stimuli. The results represent the first report of increased multisensory facilitation in schizophrenia and suggest that, although unisensory deficits are present, compensatory mechanisms may exist under certain conditions that permit improved multisensory integration in individuals afflicted with the disorder.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Percepción Visual/fisiología , Estimulación Acústica/métodos , Adulto , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiología , Estadística como Asunto , Adulto Joven
7.
Psychophysiology ; 42(3): 318-27, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15943686

RESUMEN

Auditory P50/M50 paired-click studies have established an association between schizophrenia and impaired sensory gating in the auditory modality. However, the presumed cross-modal generality of the gating deficit has received little study. The present study examined gating in area 3b of primary somatosensory cortex to evaluate patients' somatosensory gating at this first stage of cortical processing. One hundred twenty-two channels of magnetoencephalography (MEG) data were collected from 27 subjects with chronic schizophrenia and 21 controls during a somatosensory paired-pulse paradigm with a 75- or 500-ms interstimulus interval. M20 somatosensory responses were localized using magnetic source imaging, and a gating ratio was calculated. In a subset of these subjects, MEG was also done for the standard auditory paradigm to assess M50 gating. Patients showed abnormal auditory M50 gating but normal somatosensory M20 gating. Results argue against a cross-modal gating deficit in primary somatosensory cortex.


Asunto(s)
Percepción Auditiva/fisiología , Psicología del Esquizofrénico , Estimulación Acústica , Adulto , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Localización de Sonidos
8.
Am J Psychiatry ; 160(9): 1595-605, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12944333

RESUMEN

OBJECTIVE: Sensory gating assessed via EEG in a paired-click paradigm has often served as a neurophysiological metric of attentional function in schizophrenia. However, the standard EEG measure of sensory gating using the P50 component at electrode Cz does not foster differential assessment of left and right hemisphere contributions. Magnetoencephalography (MEG) is complementary to EEG, and its analogous M50 component may be better suited for localization and analysis of such lateralized cortical generators. The authors hypothesized that 1) auditory gating would be evident in M50 sources in superior temporal gyrus, demonstrating ratios similar to P50; 2) M50 would resemble P50 in distinguishing gating in comparison subjects and patients with schizophrenia, but M50 would show lateralization of the gating deficit; and 3) P50 and M50 sensory gating ratios would predict neuropsychological measures in patients and comparison subjects, with the MEG identification of left and right hemisphere sources allowing for the evaluation of lateralization in brain-behavior relationships. METHOD: Event-related EEG and MEG recordings were simultaneously obtained from 20 patients with schizophrenia and 15 comparison subjects. P50 amplitudes, M50 dipole source strengths, and P50 and M50 gating ratios were compared and assessed with respect to scores on neuropsychological performance measures. RESULTS: M50 dipoles localizing to superior temporal gyrus demonstrated gating similar to that of P50. As expected, patients demonstrated less P50 gating than did comparison subjects. Left (but not right) hemisphere M50 gating 1) correlated with EEG gating, 2) differentiated patients and comparison subjects, and 3) correlated with neuropsychological measures of sustained attention and working memory. CONCLUSIONS: Converging evidence from EEG, MEG, and neuropsychological measures points to left hemisphere dysfunction as strongly related to the well-established sensory gating deficit in schizophrenia.


Asunto(s)
Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Lateralidad Funcional/fisiología , Magnetoencefalografía/estadística & datos numéricos , Pruebas Neuropsicológicas , Reflejo de Sobresalto/fisiología , Esquizofrenia/fisiopatología , Lóbulo Temporal/fisiopatología , Estimulación Acústica , Adulto , Atención/fisiología , Electroencefalografía/estadística & datos numéricos , Femenino , Humanos , Masculino , Memoria/fisiología , Persona de Mediana Edad , Esquizofrenia/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA