Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomedicines ; 11(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37893004

RESUMEN

Historically, cannabis has been valued for its pain-relieving, anti-inflammatory, and calming properties. Ancient civilizations like the Egyptians, Greeks, and Chinese medicines recognized their therapeutic potential. The discovery of the endocannabinoid system, which interacts with cannabis phytoconstituents, has scientifically explained how cannabis affects the human immune system, including the central nervous system (CNS). This review explores the evolving world of cannabis-based treatments, spotlighting its diverse applications. By researching current research and clinical studies, we probe into how cannabinoids like Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) help to manage conditions ranging from chronic pain, persistent inflammation, cancer, inflammatory bowel disease, and neurological disorders to even viral diseases such as Human Immunodeficiency virus (HIV), SARS-CoV-2. and the emerging monkeypox. The long-term recreational use of cannabis can develop into cannabis use disorder (CUD), and therefore, understanding the factors contributing to the development and maintenance of cannabis addiction, including genetic predisposition, neurobiological mechanisms, and environmental influences, will be timely. Shedding light on the adverse impacts of CUD underscores the importance of early intervention, effective treatment approaches, and public health initiatives to address this complex issue in an evolving landscape of cannabis policies and perceptions.

2.
BMC Complement Med Ther ; 21(1): 114, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836748

RESUMEN

BACKGROUND: In Sub-Saharan Africa, herbal therapy continues to be utilized for HIV-1 disease management. However, the therapeutic benefits of these substances remain ambiguous. To date, little is known about the effects of these plant extracts on chronic CD4 + T-cell activation and exhaustion which is partly driven by HIV-1 associated microbial translocation. METHODS: Effects of Azadirachta indica, Momordica foetida and Moringa oleifera ethanol: water mixtures on cell viability were evaluated using the Guava PCA system. Then, an in-vitro cell culture model was developed to mimic CD4+ T cell exposures to antigens following HIV-1 microbial translocation. In this, peripheral blood mononuclear cells (PBMCs) isolated from HIV negative (n = 13), viral load < 1000 copies per mL (n = 10) and viral load > 1000 copies per mL (n = 6) study participants from rural Uganda were treated with Staphylococcus enterotoxin B (SEB). Then, the candidate plant extract (A. indica) was added to test the potential to inhibit corresponding CD4+ T cell activation. Following BD Facs Canto II event acquisition, variations in %CD38, %CD69, Human Leukocyte Antigen -DR (HLA-DR), Programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3), interferon gamma (IFN γ) and interleukin 2 (IL-2) CD4 + T cell expression were evaluated. RESULTS: Following exposure to SEB, only A. indica demonstrated a concentration-dependent ability to downregulate the levels of CD4 + T cell activation. At the final concentration of 0.500 µg/mL of A. indica, a significant downregulation of CD4 + CD38 + HLA-DR+ expression was observed in HIV negative (p < 0.0001) and both HIV infected groups (P = 0.0313). This plant extract also significantly lowered SEB induced % CD4+ T cell HLADR, PD-1 and Tim-3 levels. PD-1 and CD69 markers were only significantly downmodulated in only the HIV negative ((p = 0.0001 and p = 0.0078 respectively) and viral load< 1000 copies per ml (p = 0.0078) groups. CONCLUSION: A. indica exhibited the in-vitro immunomodulatory potential to inhibit the continuum of SEB induced CD4+ T-cell activation/ exhaustion without impacting general T-cell specific functions such as cytokine secretion. Additional studies are needed to confirm A. indica as a source of natural products for targeting persistent immune activation and inflammation during ART.


Asunto(s)
Azadirachta , Linfocitos T CD4-Positivos/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Activación de Linfocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Adolescente , Adulto , Técnicas de Cultivo de Célula , Etanol/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fitoterapia , Uganda , Agua/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA