Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 138(2): 558-567.e11, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27177779

RESUMEN

BACKGROUND: Allergen immunotherapy (AIT) is the only curative treatment for allergy. AIT faces pitfalls related to efficacy, security, duration, and patient compliance. Novel vaccines overcoming such inconveniences are in demand. OBJECTIVES: We sought to study the immunologic mechanisms of action for novel vaccines targeting dendritic cells (DCs) generated by coupling glutaraldehyde-polymerized grass pollen allergoids to nonoxidized mannan (PM) compared with glutaraldehyde-polymerized allergoids (P) or native grass pollen extracts (N). METHODS: Skin prick tests and basophil activation tests with N, P, or PM were performed in patients with grass pollen allergy. IgE-blocking experiments, flow cytometry, confocal microscopy, cocultures, suppression assays, real-time quantitative PCR, ELISAs, and ELISpot assays were performed to assess allergen capture by human DCs and T-cell responses. BALB/c mice were immunized with PM, N, or P. Antibody levels, cytokine production by splenocytes, and splenic forkhead box P3 (FOXP3)(+) regulatory T (Treg) cells were quantified. Experiments with oxidized PM were also performed. RESULTS: PM displays in vivo hypoallergenicity, induces potent blocking antibodies, and is captured by human DCs much more efficiently than N or P by mechanisms depending on mannose receptor- and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-mediated internalization. PM endorses human DCs to generate functional FOXP3(+) Treg cells through programmed death ligand 1. Immunization of mice with PM induces a shift to nonallergic responses and increases the frequency of splenic FOXP3(+) Treg cells. Mild oxidation impairs these effects in human subjects and mice, demonstrating the essential role of preserving the carbohydrate structure of mannan. CONCLUSIONS: Allergoids conjugated to nonoxidized mannan represent suitable vaccines for AIT. Our findings might also be of the utmost relevance to development of therapeutic interventions in other immune tolerance-related diseases.


Asunto(s)
Alérgenos/inmunología , Antígeno B7-H1/metabolismo , Células Dendríticas/inmunología , Mananos , Extractos Vegetales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Vacunas/inmunología , Adyuvantes Inmunológicos , Alérgenos/metabolismo , Alergoides , Animales , Anticuerpos/inmunología , Anticuerpos Bloqueadores/inmunología , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Tolerancia Inmunológica/inmunología , Ratones , Poaceae/inmunología , Polen/inmunología , Rinitis Alérgica Estacional/inmunología , Rinitis Alérgica Estacional/metabolismo
2.
Nat Commun ; 6: 7287, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26031447

RESUMEN

The vimentin filament network plays a key role in cell architecture and signalling, as well as in epithelial-mesenchymal transition. Vimentin C328 is targeted by various oxidative modifications, but its role in vimentin organization is not known. Here we show that C328 is essential for vimentin network reorganization in response to oxidants and electrophiles, and is required for optimal vimentin performance in network expansion, lysosomal distribution and aggresome formation. C328 may fulfil these roles through interaction with zinc. In vitro, micromolar zinc protects vimentin from iodoacetamide modification and elicits vimentin polymerization into optically detectable structures; in cells, zinc closely associates with vimentin and its depletion causes reversible filament disassembly. Finally, zinc transport-deficient human fibroblasts show increased vimentin solubility and susceptibility to disruption, which are restored by zinc supplementation. These results unveil a critical role of C328 in vimentin organization and open new perspectives for the regulation of intermediate filaments by zinc.


Asunto(s)
Acrodermatitis/metabolismo , Cisteína/metabolismo , Fibroblastos/metabolismo , Estrés Oxidativo , Vimentina/metabolismo , Zinc/deficiencia , Zinc/metabolismo , Acrodermatitis/patología , Fibroblastos/ultraestructura , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Técnicas In Vitro , Microscopía Confocal , Microscopía Electrónica , Imagen Óptica , Polimerizacion , Unión Proteica , Proteómica , Vimentina/ultraestructura
3.
Chemistry ; 19(21): 6641-9, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23536497

RESUMEN

Acetylcholinesterase (AChE) inhibition is one of the most currently available therapies for the management of Alzheimer's disease (AD) symptoms. In this context, NMR spectroscopy binding studies were accomplished to explain the inhibition of AChE activity by Salvia sclareoides extracts. HPLC-MS analyses of the acetone, butanol and water extracts eluted with methanol and acidified water showed that rosmarinic acid is present in all the studied samples and is a major constituent of butanol and water extracts. Moreover, luteolin 4'-O-glucoside, luteolin 3',7-di-O-glucoside and luteolin 7-O-(6''-O-acetylglucoside) were identified by MS(2) and MS(3) data acquired during the LC-MS(n) runs. Quantification of rosmarinic acid by HPLC with diode-array detection (DAD) showed that the butanol extract is the richest one in this component (134 µg mg(-1) extract). Saturation transfer difference (STD) NMR spectroscopy binding experiments of S. sclareoides crude extracts in the presence of AChE in buffer solution determined rosmarinic acid as the only explicit binder for AChE. Furthermore, the binding epitope and the AChE-bound conformation of rosmarinic acid were further elucidated by STD and transferred NOE effect (trNOESY) experiments. As a control, NMR spectroscopy binding experiments were also carried out with pure rosmarinic acid, thus confirming the specific interaction and inhibition of this compound against AChE. The binding site of AChE for rosmarinic acid was also investigated by STD-based competition binding experiments using Donepezil, a drug currently used to treat AD, as a reference. These competition experiments demonstrated that rosmarinic acid does not compete with Donepezil for the same binding site. A 3D model of the molecular complex has been proposed. Therefore, the combination of the NMR spectroscopy based data with molecular modelling has permitted us to detect a new binding site in AChE, which could be used for future drug development.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/aislamiento & purificación , Inhibidores de la Colinesterasa/farmacología , Cinamatos/aislamiento & purificación , Cinamatos/farmacología , Depsidos/aislamiento & purificación , Depsidos/farmacología , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Luteolina/aislamiento & purificación , Luteolina/farmacología , Salvia/química , Sitios de Unión , Inhibidores de la Colinesterasa/química , Cromatografía Líquida de Alta Presión , Cinamatos/química , Depsidos/química , Donepezilo , Glucósidos/química , Indanos/farmacocinética , Indanos/uso terapéutico , Luteolina/química , Modelos Moleculares , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Portugal , Ácido Rosmarínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA