Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 176(2): e14247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38499953

RESUMEN

Oilseed rape (Brassica napus) is one of the most important oil crops in the world and shows sensitivity to low phosphorus (P) availability. In many soils, organic P (Po) is the main component of the soil P pool. Po must be mineralised to Pi through phosphatases, and then taken up by plants. However, the relationship between root-secreted acid phosphatases (APase) and root morphology traits, two important P-acquisition strategies in response to P deficiency, is unclear among B. napus genotypes. This study aimed to understand their relationship and how they affect P acquisition, which is crucial for the sustainable utilisation of agricultural P resources. This study showed significant genotypic variations in root-secreted APase activity per unit root fresh weight (SAP) and total root-secreted APase activity per plant (total SAP) among 350 B. napus genotypes. Seed yield was positively correlated with total SAP but not significantly correlated with SAP. Six root traits of 18 B. napus genotypes with contrasting root biomass were compared under normal Pi, low Pi and Po. Genotypes with longer total root length (TRL) reduced SAP, but those with shorter TRL increased SAP under P deficiency. Additionally, TRL was important in P-acquisition under three P treatments, and total SAP was also important in P-acquisition under Po treatment. In conclusion, trade-offs existed between the two P-acquisition strategies among B. napus genotypes under P-deficient conditions. Total SAP was an important root trait under Po conditions. These results might help to breed B. napus with greater P-acquisition ability under low P availability conditions.


Asunto(s)
Brassica napus , Fósforo , Brassica napus/genética , Fosfatasa Ácida/genética , Fenotipo , Genotipo , Suelo
2.
Chemosphere ; 337: 139392, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37419159

RESUMEN

Optimal phosphorus (P) managements can improve the crop yield without reducing soil P supply capacity over the long term. In this study, the rapeseed-rice rotation experiments were conducted to evaluate the effect of five optimal P fertilizer managements, including the addition of RA (rooting agents), PSB (phosphate solubilizing bacteria), CMP (calcium and magnesium phosphate fertilizer), DP1 (starter P) and DP2 (foliar fertilizer) with the reduction of 40% (in the 1st rapeseed season) and 75% (in the 2nd rapeseed season) P fertilizers of farmers' fertilizer practice (FFP) on crop productivity and soil P fertility in low and high P fertility soils. Seed yield, P partial factor productivity, and P recovery efficiency of both cultivars, Shengguang168 (SG168) and Zhongshuang 11 (ZS11), were significantly improved under optimal P managements, and the increase of them in low P fertility soil was more than that in high P fertility soil. Total P surplus was lower under optimal P managements than under FFP in both P fertility soils. The increasing amount of crop yields under optimal P managements for both cultivars was equivalent to that of 16.0-38.3 kg P2O5 hm-2 of P fertilizer application, and the order of the optimal P managements was as follows: RA > PSB > CMP > DP1 > DP2. In addition, the grain yield of rotated rice cultivar Longliangyou1212 (LLY1212) without P supply was not reduced in both fertility soils. Compared with low P fertility soil, yields of SG168, ZS11 and LLY1212 in high P fertility soil increased by 28.1%-71.7%, 28.3%-78.9% and 26.2%-47.2% at the same treatment, respectively. In summary, optimal P managements in the rapeseed season could stabilize the crop yield, promote P use efficiency and the capacity of soil P supply in the rapeseed-rice rotation, especially in low P fertility soil.


Asunto(s)
Brassica napus , Brassica rapa , Oryza , Suelo , Fósforo , Fertilizantes , Fertilidad , Agricultura , Nitrógeno/análisis
3.
J Exp Bot ; 73(14): 4753-4777, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35511123

RESUMEN

Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.


Asunto(s)
Brassica napus , Ácido Abscísico/metabolismo , Aclimatación , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Ann Bot ; 128(7): 919-930, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34490877

RESUMEN

BACKGROUND AND AIMS: Oilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus. However, the genetic bases controlling plant height and branch number in B. napus under P deficiency remain largely unknown. This study aims to mine candidate genes for plant height and branch number by genome-wide association study (GWAS) and determine low-P-tolerance haplotypes. METHODS: An association panel of B. napus was grown in the field with a low P supply (P, 0 kg ha-1) and a sufficient P supply (P, 40 kg ha-1) across 2 years and plant height and branch number were investigated. More than five million single-nucleotide polymorphisms (SNPs) were used to conduct GWAS of plant height and branch number at two contrasting P supplies. KEY RESULTS: A total of 2127 SNPs were strongly associated (P < 6·25 × 10-07) with plant height and branch number at two P supplies. There was significant correlation between phenotypic variation and the number of favourable alleles of associated loci on chromosomes A10 (chrA10_821671) and C08 (chrC08_27999846), which will contribute to breeding improvement by aggregating these SNPs. BnaA10g09290D and BnaC08g26640D were identified to be associated with chrA10_821671 and chrC08_27999846, respectively. Candidate gene association analysis and haplotype analysis showed that the inbred lines carrying ATT at BnaA10g09290Hap1 and AAT at BnaC08g26640Hap1 had greater plant height than lines carrying other haplotype alleles at low P supply. CONCLUSION: Our results demonstrate the power of GWAS in identifying genes of interest in B. napus and provided insights into the genetic basis of plant height and branch number at low P supply in B. napus. Candidate genes and favourable haplotypes may facilitate marker-based breeding efforts aimed at improving P use efficiency in B. napus.


Asunto(s)
Brassica napus , Brassica napus/genética , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Fósforo , Fitomejoramiento
5.
Environ Pollut ; 277: 116778, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33639599

RESUMEN

Since the urbanization and industrialization are wildly spread in recent decades, the concentration of Zn in soil has increased in various regions. Although the interactions between P and Zn has long been recognized, the effect of high level of Zn on P uptake, translocation and distribution in rice and its molecular mechanism are not fully understood. In this study, we conducted both hydroponic culture and field trial with different combined applications of P and Zn to analyze the rice growth and yield, the uptake, translocation and distribution of P and Zn, as well as the P- and Zn-related gene expression levels. Our results showed that high level of Zn decreased the rice biomass and yield production, and inhibited the root-to-shoot translocation and distribution of P into new leaves by down-regulating P transporter genes OsPT2 and OsPT8 in shoot, which was controlled by OsPHR2-OsmiR399-OsPHO2 module. High Zn supply triggered P starvation signal in root, thereafter increased the activities of both root-endogenous and -secreted acid phosphatase to release more Pi, and induced the expression OsPT2 and OsPT8 to uptake more P for plant growth. On the other hand, high level of P significantly decreased the Zn concentrations in both root and shoot, and the root uptake ability of Zn through altering the expression levels of OsZIPs, which were further confirmed by the P high-accumulated mutant osnla1-2 and OsPHR2-OE transgenic plant. Taken together, we revealed the physiological and molecular mechanisms of P-Zn interactions, and proposed a working model of the cross-talk between P and Zn in rice plants. Our results also indicated that appropriate application of P fertilizer is an effective strategy to reduce rice uptake of excessive Zn when grown in Zn-contaminated soil.


Asunto(s)
Oryza , Oryza/genética , Fósforo , Raíces de Plantas , Plantas Modificadas Genéticamente , Zinc
6.
J Cell Physiol ; 235(11): 8626-8639, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32324263

RESUMEN

Folic acid (FA) is routinely supplemented in the food of pregnant women or women planning a pregnancy, but whether FA exerts a positive effect on preventing fetal bone malformation remains obscure. In this study, we first exposed chick embryos with different concentrations of FA (1-10,000 pmol/egg) and studied vertebral mineralization and ossification through alcian blue and alizarin red as well as hematoxylin and eosin staining. Morphological measurements of the thoracic vertebral bodies demonstrated that 100 pmol/egg FA exhibited the tendency of shortening the growth plate, extended the ossification center, and increased the amount of Type I collagen. Second, we suggested that FA treatment promotes osteogenesis by demonstrating increased RUNX family transcription factor 2 (Runx2) and Osterix expressions in MC3T3-E1 and ATDC5 cells. Transforming growth factor-ß (TGF-ß) signaling was also upregulated by FA exposure, and addition of smad2/3 small interfering RNA knocks down FA-induced increased p-smad2/3, Runx2, and Osterix expression in vitro during chondrogenesis induction. Third, we employed dexamethasone (Dex), exposed chick embryos as an animal model of skeletal developmental retardation, to explore whether FA could rescue the loss of embryonic bone mass. Micro-computed tomography imaging showed that the addition of FA improved the reduction of bone mass in our model. Histological analysis of the vertebral bodies revealed that FA dramatically improved the delayed turnover of the zones of growth plate caused by Dex exposure. Immunofluorescence on the chick embryonic vertebrae and chondrocytes showed that FA supplementation upregulated the expression of TGF-ß1, p-smad2/3, and improved Runx2 as well as Osterix expression in the Dex + FA group compared with the Dex group. Lastly, we found that supplementation with TGF-ß1 (1 ng/egg) rescued bone mass loss caused by Dex as was also seen in FA exposure. Taken together these results, our data revealed that FA supplementation was able to rescue Dex exposure-induced inhibitive osteogenesis through targeting on the TGF-ß signaling pathway.


Asunto(s)
Condrocitos/efectos de los fármacos , Ácido Fólico/farmacología , Osteogénesis/efectos de los fármacos , Factor de Crecimiento Transformador beta/efectos de los fármacos , Corticoesteroides/farmacología , Animales , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Embrión de Pollo , Condrocitos/metabolismo , Condrogénesis/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
7.
Sci Rep ; 6: 33113, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27624881

RESUMEN

A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and 'normal' phosphate (Pi) supply using a 'pouch and wick' system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica.


Asunto(s)
Brassica napus , Fósforo/farmacología , Raíces de Plantas , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo
8.
Ann Bot ; 118(2): 173-84, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27279575

RESUMEN

BACKGROUND AND AIMS: An important adaptation of plants to phosphorus (P) deficiency is to alter root system architecture (RSA) to increase P acquisition from the soil, but soil-based observations of RSA are technically challenging, especially in mature plants. The aim of this study was to investigate the root development and RSA of oilseed rape (Brassica napus L.) under low and high soil P conditions during an entire growth cycle. METHODS: A new large Brassica-rhizotron system (approx. 118-litre volume) was developed to study the RSA dynamics of B. napus 'Zhongshuang11' in soils, using top-soils supplemented with low P (LP) or high P (HP) for a full plant growth period. Total root length (TRL), root tip number (RTN), root length density (RLD), biomass and seed yield traits were measured. KEY RESULTS: TRL and RTN increased more rapidly in HP than LP plants from seedling to flowering stages. Both traits declined from flowering to silique stages, and then increased slightly in HP plants; in contrast, root senescence was observed in LP plants. RSA parameters measured from the polycarbonate plates were empirically consistent with analyses of excavated roots. Seed yield and shoot dry weights were closely associated positively with root dry weights, TRL, RLD and RTN at both HP and LP. CONCLUSIONS: The Brassica-rhizotron system is an effective method for soil-based root phenotyping across an entire growth cycle. Given that root senescence is likely to occur earlier under low P conditions, crop P deficiency is likely to affect late water and nitrogen uptake, which is critical for efficient resource use and optimal crop yields.


Asunto(s)
Brassica napus/fisiología , Fósforo/deficiencia , Biomasa , Brassica napus/anatomía & histología , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Nitrógeno/metabolismo , Fenotipo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Plantones/anatomía & histología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Semillas/anatomía & histología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA