Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Food Res Int ; 158: 111512, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35840220

RESUMEN

Geographic-label is a remarkable feature for Chinese tea products. In this study, the UHPLC-Q/TOF-MS-based metabolomics approach coupled with chemometrics was used to determine the five narrow-geographic origins of Keemun black tea. Thirty-nine differentiated compounds (VIP > 1) were identified, of which eight were quantified. Chemometric analysis revealed that the linear discriminant analysis (LDA) classification accuracy model is 91.7%, with 84.7% cross-validation accuracy. Three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF) and support vector machine (SVM), were introduced to improve the recognition of narrow-geographic origins, the performances of the model were evaluated by confusion matrix, receiver operating characteristic curve (ROC) and area under the curve (AUC). The recognition of RF, SVM and FNN for Keemun black tea from five narrow-geographic origins were 87.5%, 94.44%, and 100%, respectively. Importantly, FNN exhibited an excellent classification effect with 100% accuracy. The results indicate that metabolomics fingerprints coupled with chemometrics can be used to authenticate the narrow-geographic origins of Keemun black teas.


Asunto(s)
Camellia sinensis , , Algoritmos , Cromatografía Líquida de Alta Presión , Aprendizaje Automático , Metabolómica
2.
J Sci Food Agric ; 101(2): 379-387, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32623727

RESUMEN

Tea is the one of the most popular non-alcoholic caffeinated beverages in the world. Tea is produced from the tea plant (Camellia sinensis (L.) O. Kuntze), which is known to accumulate fluoride. This article systematically analyzes the literature concerning fluoride absorption, transportation and fluoride tolerance mechanisms in tea plants. Fluoride bioavailability and exposure levels in tea infusions are also reviewed. The circulation of fluoride within the tea plantation ecosystems is in a positive equilibrium, with greater amounts of fluoride introduced to tea orchards than removed. Water extractable fluoride and magnesium chloride (MgCl2 ) extractable fluoride in plantation soil are the main sources of absorption by tea plant root via active trans-membrane transport and anion channels. Most fluoride is readily transported through the xylem as F- /F-Al complexes to leaf cell walls and vacuole. The findings indicate that tea plants employ cell wall accumulation, vacuole compartmentalization, and F-Al complexes to co-detoxify fluoride and aluminum, a possible tolerance mechanism through which tea tolerates higher levels of fluoride than most plants. Furthermore, dietary and endogenous factors influence fluoride bioavailability and should be considered when exposure levels of fluoride in commercially available dried tea leaves are interpreted. The relevant current challenges and future perspectives are also discussed. © 2020 Society of Chemical Industry.


Asunto(s)
Camellia sinensis/química , Fluoruros/análisis , Fluoruros/metabolismo , Aluminio/análisis , Aluminio/metabolismo , Disponibilidad Biológica , Transporte Biológico , Camellia sinensis/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Exposición Dietética/efectos adversos , Exposición Dietética/análisis , Humanos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Medición de Riesgo , Suelo/química , Té/química
3.
Plant Physiol Biochem ; 158: 65-75, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33296847

RESUMEN

Tea plant (Camellia sinensis (L.) O. Kuntze) is known to accumulate high concentrations of fluoride (F) in its leaves; however, the underlying mechanism of F accumulation remains unclear. The main objective of this study was to investigate the homeostatic self-defense mechanisms of tea leaves to F supplementation (0, 5, 20, and 50 mgL-1) by metabolomics and ionomics. We identified a total of 96 up-regulated and 40 down-regulated metabolites in tea leaves treated with F. Of these different compounds, minor polypeptides, carbohydrates and amino acids played valuable roles in the F-tolerating mechanism of tea plant. After F treatments, the concentrations of sodium (Na), ferrum (Fe), manganese (Mn), and molybdenum (Mo) were significantly increased in tea leaves, whereas the aluminum (Al) was decreased. These findings suggest that the ionic balance and metabolites are attributable to the development of F tolerance, providing new insight into tea plant adaptation to F stress.


Asunto(s)
Camellia sinensis/metabolismo , Fluoruros/toxicidad , Estrés Fisiológico , Camellia sinensis/efectos de los fármacos , Iones , Metaboloma , Hojas de la Planta
4.
J Sci Food Agric ; 100(8): 3554-3559, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32124449

RESUMEN

BACKGROUND: Tea (Camellia sinensis (L.) O. Kuntze) is a hyper-accumulator of fluoride (F). To understand F uptake and distribution in living plants, we visually evaluated the real-time transport of F absorbed by roots and leaves using a positron-emitting (18 F) fluoride tracer and a positron-emitting tracer imaging system. RESULTS: F arrived at an aerial plant part about 1.5 h after absorption by roots, suggesting that tea roots had a retention effect on F, and then was transported upward mainly via the xylem and little via the phloem along the tea stem, but no F was observed in the leaves within the initial 8 h. F absorbed via a cut petiole (leaf 4) was mainly transported downward along the stem within the initial 2 h. Although F was first detected in the top and ipsilateral leaves, it was not detected in tea roots by the end of the monitoring. During the monitoring time, F principally accumulated in the node. CONCLUSION: F uptake by the petiole of excised leaf and root system was realized in different ways. The nodes indicated that they may play pivotal roles in the transport of F in tea plants. © 2020 Society of Chemical Industry.


Asunto(s)
Camellia sinensis/metabolismo , Fluoruros/metabolismo , Transporte Biológico , Camellia sinensis/química , Fluoruros/análisis , Floema/química , Floema/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Xilema/química , Xilema/metabolismo
5.
J Sci Food Agric ; 100(1): 168-176, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31471909

RESUMEN

BACKGROUND: Removing excessive naturally occurring fluoride from tea and/or infusions is difficult because the process has low efficiency and causes secondary pollution. In this study, a novel electrodialysis (ED) technology was developed. We examined the effect of crucial parameters (electrolyte concentration, operation voltage, ED duration and initial concentration of the tea infusion) on defluoridation performance using a highly efficient ion-exchange membrane with five-compartment cells. RESULTS: The most effective ED system results were obtained at an electrolyte concentration of 10 g kg-1 and operating voltage of 20 V. Moreover, the fluoride removal capacity (10.70-66.93%) was highly dependent on the ED duration (1-15 min) and initial concentration of the tea infusion (0.5-10 g kg-1 ). The longer the ED duration and the lower the initial concentration, the higher was the defluoridation performance. During ED, limited loss of the main inclusions (total polyphenols, catechins, caffeine and selected ions) was observed. Furthermore, the D201 anion resin-filled ED stack (0.5-5 g) and improvement of concentrate compartment electrolyte (≥5 times the dilute compartment electrolyte) in the ED system enhanced the defluoridation rate significantly. CONCLUSION: ED is a potentially effective method that can be used for defluoridation in the deep processing of tea products. © 2019 Society of Chemical Industry.


Asunto(s)
Diálisis/métodos , Fluoruros/química , Manipulación de Alimentos/métodos , Té/química , Diálisis/instrumentación , Fluoruros/aislamiento & purificación , Manipulación de Alimentos/instrumentación
6.
Food Chem ; 297: 124963, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31253305

RESUMEN

Authentication of ground coffee has become an important issue because of fraudulent activities in the sector. In the current work, sixty-seven Brazilian coffees produced in different geographical origins using organic (ORG, n = 25) and conventional (CONV, n = 42) systems were analyzed for their stable isotope ratios (δ13C, δ18O, δ2H, and δ15N). Data were analyzed by inferential analysis to compare the factors whereas linear discriminant analysis (LDA), k-nearest neighbors (k-NN), and support vector machines (SVM) were used to classify the coffees based on their origin. ORG and CONV cultivated coffees could not be differentiated according to C stable isotope ratio (δ13C; p = 0.204), but ORG coffees presented higher values of the N stable isotope ratio (δ15N; p = 0.0006). k-NN presented the best classification results for both ORG and CONV coffees (87% and 67%, respectively). SVM correctly classified coffees produced in São Paulo (75% accuracy), while LDA correctly classified 71% of coffees produced in Minas Gerais.


Asunto(s)
Café/química , Análisis de los Alimentos/métodos , Espectrometría de Masas/métodos , Brasil , Isótopos de Carbono/análisis , Deuterio/análisis , Análisis Discriminante , Análisis de los Alimentos/estadística & datos numéricos , Espectrometría de Masas/estadística & datos numéricos , Isótopos de Nitrógeno/análisis , Agricultura Orgánica , Isótopos de Oxígeno/análisis , Máquina de Vectores de Soporte
7.
J Sci Food Agric ; 99(5): 2596-2601, 2019 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-30411367

RESUMEN

BACKGROUND: Confirmation of food labeling that claims production in a small geographic region is critical to traceability, quality control and brand protection. In the current study, isotope ratio mass spectrometry (IRMS) was used to generate profiles of δ13 C and δ15 N to determine if the stable isotope signatures of Keemun black tea differ within the three counties that claim production. Other factors (cultivar type, leaf maturity and manufacturing process) were considered for their potential effects. RESULTS: Both cultivar type and leaf maturity have remarkable impact on the δ15 N values of tea leaves, and that the cultivar influenced the δ13 C values. Keemun black tea from Qimen county could be easily discriminated from samples from Dongzhi and Guichi counties based on δ15 N signatures. The k-NN model was cross-validated with an accuracy of 91.6%. Environmental factors and/or genotype seem to be the major reasons for δ15 N differences in Keemun black tea from the selected regions. CONCLUSION: This article provides a potential effective method to delineate the geographic point-of-origin of Keemun black tea based on δ15 N signatures. © 2018 Society of Chemical Industry.


Asunto(s)
Camellia sinensis/química , Espectrometría de Masas/métodos , Isótopos de Nitrógeno/análisis , Té/química , Isótopos de Carbono/análisis , Análisis Discriminante
8.
J Food Sci ; 83(4): 1165-1172, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29577290

RESUMEN

Environmental and plant factors (soil condition, variety, season, and maturity) and exposure risks of aluminum (Al), manganese (Mn), lead (Pb), cadmium (Cd), and copper (Cu) in tea leaves were investigated. The concentrations of these metals in tea leaves could not be predicted by their total concentrations in the soil. During any one season, there were differences in Al, Mn, and Cd levels between tea varieties. Seasonally, autumn tea and/or summer tea had far higher levels of Al, Mn, Pb, and Cd than did spring tea. Tea leaf maturity positively correlated with the concentrations of Al, Mn, Pb, and Cd, but negatively with Cu. The calculated average daily intake doses (mg/ [kg•d]) for these metal elements were 0.14 (Al), 0.11 (Mn), 2.70 × 10-3 (Cu), 2.80 × 10-4 (Pb), and 2.88 × 10-6 (Cd). The hazard quotient values of each metal were all significantly lower than risk level (=1), suggesting that, for the general population, consumption of tea does not result in the intake of excessive amounts of Al, Mn, Pb, Cd, or Cu. This study identified the factors that can be monitored in the field to decrease consumer exposure to Al and Mn through tea consumption. PRACTICAL APPLICATION: Environmental and plant factors influence aluminum and heavy metal accumulation in tea leaves. Consumers of tea are not ingesting excessive Al, Mn, Pb, Cd, or Cu. Trackable factors were identified to manage exposure levels.


Asunto(s)
Aluminio/análisis , Seguridad de Productos para el Consumidor , Exposición a Riesgos Ambientales/análisis , Metales Pesados/análisis , Hojas de la Planta/química , Té/química , China , Contaminación de Alimentos/análisis , Política Nutricional , Medición de Riesgo , Factores de Riesgo , Estaciones del Año , Contaminantes del Suelo/análisis
9.
J Food Sci ; 81(1): H235-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26647101

RESUMEN

The aim of this study was to determine the levels of fluoride in commercial teas and to estimate the contribution of tea consumption to the fluoride recommended daily allowance. A total of 558 tea products in 6 categories, green tea, black tea, oolong tea, pu'er tea, white tea, and reprocessed tea, were collected in the period from 2010 to 2013. The levels of fluoride in infusions of these teas were determined by a fluoride-ion selective electrode. The mean fluoride level in all of the tea samples was 85.16 mg/kg. For each category of tea, the mean fluoride levels were 63.04, 99.74, 52.19, 101.67, 159.78, and 110.54 mg/kg for green tea, black tea, white tea, pu'er tea, oolong tea, and reprocessed tea, respectively. The fluoride content of tea from 4 tea zones in descending order were Southern tea zone (111.39 mg/kg) > Southwest tea zone (78.78 mg/kg) > Jiangnan tea zone (71.73 mg/kg) > Jiangbei tea zone (64.63 mg/kg). These areas produced teas with lower fluoride levels than available foreign-produced tea (161.11 mg/kg). The mean chronic daily intake (CDI) was 0.02 mg/(kg•day) or 1.27 mg/kg. Generally, consuming tea from these 6 categories does not result in the intake of excessive amounts of fluoride for the general population.


Asunto(s)
Camellia sinensis/química , Dieta , Conducta Alimentaria , Fluoruros/análisis , Té/química , Fluoruros/administración & dosificación , Humanos
10.
Huan Jing Ke Xue ; 34(11): 4440-6, 2013 Nov.
Artículo en Chino | MEDLINE | ID: mdl-24455957

RESUMEN

Pot experiments and the sequential extraction method were conducted to study the chemical form changes of exogenous water solution fluoride in tea garden soil and their contribution to fluoride accumulation of tea plant. The results showed that the background concentration of all chemical forms of fluoride had little changes with time treatment, which was in a relatively stable state. The exogenous water solution fluoride adding to the soils was rapidly transformed to other fractions. Under the 10 mg x kg(-1) fluoride treatment, the concentration of water solution fluoride increased firstly and then decreased with time treatment, the concentration of organic matter fluoride and Fe/Mn oxides fluoride decreased, the concentration of exchangeable fluoride was not different before and after the treatment (P > 0.05), and the concentration of residual fluoride was in a relatively stable state; under the 200 mg x kg(-1) fluoride treatment, the concentration of water solution fluoride, Fe/Mn oxides fluoride and organic matter fluoride decreased with time treatment, the concentration of exchangeable fluoride increased firstly and then decreased, showed no difference before and after the treatment (P > 0.05), and the concentration of residual fluoride increased, with some differences compared with 10 mg x kg(-1) fluoride treatment. The concentration of total fluoride in root, stem and leaf had significant differences under 0-10 mg x kg(-1) fluoride treatment (P < 0.05), while showed no difference from 10 to 100 mg x kg(-1) fluoride treatment (P > 0.05). Step regression analysis suggested the contribution of all chemical forms of fluoride to the concentration of water solution fluoride and total fluoride of root, stem and leaf had some differences, there was a remarkable regression relationship among the content of total fluoride in leaf and water solution fluoride, organic matter fluoride, Fe/Mn oxides fluoride and residual fluoride in soil, however, no significant difference for water solution fluoride of leaf was found.


Asunto(s)
Fluoruros/análisis , Contaminantes del Suelo/análisis , Suelo/química , Disponibilidad Biológica , Camellia sinensis , Soluciones , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA