Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stroke ; 54(5): 1367-1376, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36912138

RESUMEN

BACKGROUND: Structural network damage is a potentially important mechanism by which cerebral small vessel disease (SVD) can cause cognitive impairment. As a central hub of the structural network, the role of thalamus in SVD-related cognitive impairments remains unclear. We aimed to determine the associations between the structural alterations of thalamic subregions and cognitive impairments in SVD. METHODS: In this cross-sectional study, 205 SVD participants without thalamic lacunes from the third follow-up (2020) of the prospective RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort), which was initiated in 2006, Nijmegen, were included. Cognitive functions included processing speed, executive function, and memory. Probabilistic tractography was performed from thalamus to 6 cortical regions, followed by connectivity-based thalamic segmentation to assess each thalamic subregion volume and connectivity (measured by mean diffusivity [MD] of the connecting white matter tracts) with the cortex. Least absolute shrinkage and selection operator regression analysis was conducted to identify the volumes or connectivity of the total thalamus and 6 thalamic subregions that have the strongest association with cognitive performance. Linear regression and mediation analyses were performed to test the association of least absolute shrinkage and selection operator-selected thalamic subregion volume or MD with cognitive performance, while adjusting for age and education. RESULTS: We found that higher MD of the thalamic-motor tract was associated with worse processing speed (ß=-0.27; P<0.001), higher MD of the thalamic-frontal tract was associated with worse executive function (ß=-0.24; P=0.001), and memory (ß=-0.28; P<0.001), respectively. The mediation analysis showed that MD of thalamocortical tracts mediated the association between corresponding thalamic subregion volumes and the cognitive performances in 3 domains. CONCLUSIONS: Our results suggest that the structural alterations of thalamus are linked to cognitive impairment in SVD, largely depending on the damage pattern of the white matter tracts connecting specific thalamic subregions and cortical regions.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Estudios Prospectivos , Estudios Transversales , Imagen por Resonancia Magnética , Tálamo/patología , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones
2.
Aging Dis ; 8(5): 531-545, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28966799

RESUMEN

The aged population is among the highest at risk for ischemic stroke, yet most stroke patients of advanced ages (>80 years) are excluded from access to thrombolytic treatment by tissue plasminogen activator, the only FDA approved pharmacological therapy for stroke victims. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) robustly alleviate ischemic brain injury in young adult rodents, but have not yet been studied in aged animals. This study investigated whether chronic dietary supplementation of n-3 PUFAs protects aging brain against cerebral ischemia and improves long-term neurological outcomes. Aged (18-month-old) mice were administered n-3 PUFA-enriched fish oil in daily chow for 3 months before and up to 8 weeks after 45 minutes of transient middle cerebral artery occlusion (tMCAO). Sensorimotor outcomes were assessed by cylinder test and corner test up to 35 days and brain repair dynamics evaluated immunohistologically up to 56 days after tMCAO. Mice receiving dietary supplementation of n-3 PUFAs for 3 months showed significant increases in brain ratio of n-3/n-6 PUFA contents, and markedly reduced long-term sensorimotor deficits and chronic ischemic brain tissue loss after tMCAO. Mechanistically, n-3 PUFAs robustly promoted post-ischemic angiogenesis and neurogenesis, and enhanced white matter integrity after tMCAO. The Pearson linear regression analysis revealed that the enhancement of neurogenesis and white matter integrity both correlated positively with improved sensorimotor activities after tMCAO. This study demonstrates that prophylactic dietary supplementation of n-3 PUFAs effectively improves long-term stroke outcomes in aged mice, perhaps by promoting post-stroke brain repair processes such as angiogenesis, neurogenesis, and white matter restoration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA