RESUMEN
An investigation was conducted to assess the gelation characteristics of amino acid amidated pectin and its subsequent influence on the quality of minced chicken breast (MCB) when employed as a lipid substitute. Through experimentation, it was evidenced that amidated pectin, such as glycine amidated pectin (AP@Gly), glutamic amidated pectin (AP@Glu), and lysine amidated pectin (AP@Lys), demonstrated superior viscosity and gelation capacity in comparison to their native pectin (PE) counterpart. In contrast to PE, amidated pectin samples exhibited the potential to form high-strength hydrogels under conditions of minimal restriction. Additionally, evaluations conducted on all samples established that MCB samples enriched with pectin and amidated pectin demonstrated superior water retention capability. Before thermal processing, MCB samples fortified with amidated pectin showcased higher hardness and L* values in comparison to PE and the control group. However, upon thermal processing, no significant divergence was found in the chroma and texture profile analysis (TPA) attributes across all MCB samples, and the electronic tongue sensory evaluation was closely aligned with the control group. This evidence substantiates the effectiveness of amidated pectin samples as viable lipid substitutes in MCB products.
Asunto(s)
Sustitutos de Grasa , Pectinas , Animales , Pectinas/química , Pollos/metabolismo , Carne/análisis , LípidosRESUMEN
OBJECTIVES: To identified vitamin K2 deficiency rate and risk factors among newborns in China and assess the importance of high-risk maternal intakes of vitamin K2. METHODS: This retrospective study was performed at the Neonatology Department, the Affiliated Hospital of Guangdong Medical University, China. Routinely collected mother-neonate hospitalization data from July 2020 to January 2021 were analyzed. In total, data from 200 neonates who had completed vitamin K2 tests were utilized to assess the prevalence of vitamin K2 deficiency and identify the potential risk factors. According to the vitamin K2 level, the neonates were divided into 2 groups: cases (vitamin K2 deficiency) and controls (no vitamin K2 deficiency). The potential risk factors for vitamin K2 deficiency were evaluated by univariate and multivariate logistic regression. RESULTS: The vitamin K2 level in 24 of the 200 neonates was undetectable (<0.05 ng/mL). The prevalence of low serum vitamin K2 (<0.1 ng/ml) was 33%. Study subjects with antenatal corticosteroids use had an approximately 5-fold greater risk of developing vitamin K2 deficiency. In the univariate analyses, small-for-gestational-age (SGA), caesarean section, maternal gestational diabetes and premature rupture of the membranes were risk factors for vitamin K2 deficiency. In the multivariate logistic regression analysis, high antenatal corticosteroids use, cesarean section, and SGA were independently associated with vitamin K2 deficiency. CONCLUSION: The present study demonstrated that antenatal corticosteroids use is independently associated with vitamin K2 deficiency. This finding highlights the importance of routine vitamin K2 supplementation in late-stage pregnant women and neonates in China.
Asunto(s)
Enfermedades del Recién Nacido , Esteroides , Vitamina K 2 , Deficiencia de Vitamina K , Femenino , Humanos , Recién Nacido , Embarazo , Corticoesteroides , Cesárea , Pueblos del Este de Asia , Recién Nacido Pequeño para la Edad Gestacional , Estudios Retrospectivos , Factores de Riesgo , Esteroides/efectos adversos , Deficiencia de Vitamina K/epidemiología , Exposición MaternaRESUMEN
The threshold is key to risk assessment of soil cadmium (Cd) pollution. However, there is limited research on the soil Cd risk threshold of potatoes. Soil and potato samples (n = 256) were used to establish and optimize the Cd risk threshold by using relative cumulative frequency, bioconcentration factor, and regression model. The results showed that suggested risk screening values (SRSVs) for soil Cd were divided into 2.465 (pH ≤ 5.5), 2.564 (5.5 < pH ≤ 6.5), 2.778 (6.5 < pH ≤ 7.5), and 4.348 mg kg-1 (pH > 7.5). SRSVs were applied to classify soil Cd risk assessment by collecting soil samples (n = 100). Low-risk areas only comprised 0.98% of the total area using risk screening values (RSVs) (GB15618-2018), and risk areas comprised as much as 99.02%. Low-risk area and risk area comprised 97.75% and 2.25% of the total area based on SRSVs. SRSVs are appropriate for potato production in typical karst areas.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum tuberosum , Cadmio/análisis , Suelo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Medición de Riesgo , China , Metales Pesados/análisisRESUMEN
To investigate the effects and mechanism of the combination of Morus alba L. (Sangzhi) alkaloids(SZ-A) and metformin (Met) on glucose metabolism in type 2 diabetic mice, KKAy mice were divided into four groups according to the glucose and lipid indexes: control group (control), Morus alba L. (Sangzhi) alkaloids group (SZ-A, 100 mg·kg-1), metformin group (Met, 100 mg·kg-1) and combined administration group (combination, Comb, 100 mg·kg-1 SZ-A + 100 mg·kg-1 Met). All groups were administered by gavage once daily for 7 weeks accompanied with monitoring food intake, water intake, body weight as well as glycemia. Additionally, oral glucose tolerance test (OGTT), insulin tolerance test (ITT) and oral sodium pyruvate tolerance test (OPTT) were performed at week 2, week 5, week 6, respectively. The experiments were approved by the Institutional Animal Care and Use Committee of the Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (00004332). We determined the weight and lipid content of liver, and then performed the histopathological analysis after sacrificed. Furthermore, Western blot assay was used to detect the protein levels of key molecules of PI3K/PDK1/Akt/GLUT signaling pathway in liver, muscle and adipose tissue. Compared to the SZ-A or Met monotherapy group, SZ-A + Met significantly improved the glucose metabolism disorder, which was showed in reduced food intake, water intake, the level of fasting blood glucose, postprandial blood glucose and glycosylated hemoglobin A1c (HbA1c) of KKAy mice, as well as improved glucose tolerance, enhanced insulin sensitivity and inhibited gluconeogenesis. In addition, SZ-A + Met obviously up-regulated the protein expression levels in PI3K/PDK1/Akt/GLUT signaling pathway in liver, muscle and adipose tissue of KKAy mice. Moreover, the liver lipid accumulation and blood aminotransferase level of KKAy mice in the combined administration group were significantly reduced. Therefore, we concluded that the combination of SZ-A and Met improved glucose metabolism and inhibited the occurrence and development of T2DM via promoting glucose uptake and utilization, suggesting that the combination of SZ-A and Met is a more useful treatment for T2DM.
RESUMEN
Diabetic peripheral neuropathy (DPN) is one of the most common microvascular complications occurring in both type 1 and type 2 diabetes mellitus patients, which often results in patients suffering from severe hyperalgesia and allodynia. Up to now, the clinical therapeutic effect of DPN is still unsatisfactory. Metformin is an anti-diabetic drug that has been safely and widely used for the treatment of type 2 diabetes for decades. Studies have shown that metformin can improve pain caused by DPN, but its effects on the nerve conduction velocity and morphology of the sciatic nerve of DPN, and the mechanism for improving DPN are not clear. Therefore, the STZ-induced model of type 1 DPN in SD rats was used to study the effects of metformin on DPN, and to preliminarily explore its mechanism in this study. All animal experiments were carried out with approval of the Experimental Animal Welfare Ethics Committee of the Institute of Materia Medica (Chinese Academy of Medical Sciences and Peking Union Medical College). After the model was established successfully, STZ diabetic rats were randomly divided into a model group and a metformin treatment group, and 10 normal SD rats were selected as the normal control group, and the rats were intragastrically administered for 12 weeks. The results showed that metformin significantly reduced blood glucose, glycosylated hemoglobin, food consumption and water consumption in STZ rats. Metformin markedly increased the motor nerve conduction velocity and mechanical stabbing pain threshold, prolonged the hot plate latency threshold, and improved the pathological morphological abnormalities of the sciatic nerve in STZ rats. In addition, metformin increased the content of glutathione (GSH), enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and reduced the content of malondialdehyde (MDA) in serum and sciatic nerve of STZ diabetic rats, as well as regulating the expression of genes related to oxidative stress in the sciatic nerve. Metformin obviously reduced the levels of pro-inflammatory factors such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in the serum in STZ rats, and inhibited the gene expression of these inflammatory factors in the sciatic nerve. In summary, metformin significantly increased nerve conduction velocity, improved sciatic nerve morphological abnormalities and pain in DPN rats, which may be related to its effect in improving oxidative stress and reducing inflammation.
RESUMEN
Jin-tang-ning (JTN), a Chinese patent medicine, mainly comprised of Bombyx moriL., has been proved to show α-glucosidase inhibitory efficacy and clinically effective for the treatment of type 2 diabetes (T2DM). Recently, we have reported that JTN could ameliorate postprandial hyperglycemia and improved ß cell function in monosodium glutamate (MSG)-induced obese mice, suggesting that JTN might play a potential role in preventing the conversion of impaired glucose tolerance (IGT) to T2DM. In this study, we evaluated the effect of JTN on the progression of T2DM in the pre-diabetic KKAy mice. During the 10 weeks of treatment, blood biochemical analysis and oral glucose tolerance tests were performed to evaluate glucose and lipid profiles. The ß cell function was quantified using hyperglycemic clamp at the end of the study. JTN-treated groups exhibited slowly raised fasting and postprandial blood glucose levels, and also ameliorated lipid profile. JTN improved glucose intolerance after 8 weeks of treatment. Meanwhile, JTN restored glucose-stimulated first-phase of insulin secretion and induced higher maximum insulin levels in the hyperglycemic clamp. Thus, to investigate the underlying mechanisms of JTN in protecting ß cell function, the morphologic changes of the pancreatic islets were observed by optical microscope and immunofluorescence of hormones (insulin and glucagon). Pancreatic protein expression levels of key factors involving in insulin secretion-related pathway and ER stress were also detected by Western blot. Pre-diabetic KKAy mice exhibited a compensatory augment in ß cell mass and abnormal α cell distribution. Long-term treatment of JTN recovered islet morphology accompanied by reducing α cell area in KKAy mice. JTN upregulated expression levels of glucokinase (GCK), pyruvate carboxylase (PCB) and pancreas duodenum homeobox-1 (PDX-1), while down-regulating C/EBP homologous protein (Chop) expression in pancreas of the hyperglycemic clamp, which indicated the improvement of mitochondrial metabolism and relief of endoplasmic reticulum (ER) stress of ß cells after JTN treatment. These results will provide a new insight into exploring a novel strategy of JTN for protecting ß cell function and preventing the onset of pre-diabetes to T2DM.
Asunto(s)
Productos Biológicos/farmacología , Hiperglucemia/tratamiento farmacológico , Células Secretoras de Insulina/efectos de los fármacos , Estado Prediabético , Animales , Bombyx , Estrés del Retículo Endoplásmico , Femenino , Glucoquinasa , Prueba de Tolerancia a la Glucosa , Proteínas de Homeodominio , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Medicamentos sin Prescripción/farmacología , Piruvato Carboxilasa , Transactivadores , Factor de Transcripción CHOPRESUMEN
Berberine (BBR), a small alkaloid, is used as a hypoglycemic agent in China. Stachyose (Sta), a Rehmannia glutinosa oligosaccharide, acts as a prebiotic. This study aimed to evaluate whether BBR combined with Sta produced better glycometabolism than BBR alone, and explored the effects on gut microbiota and metabolomics. Type-2 diabetic db/db mice were administered BBR (100 mg/kg), Sta (200 mg/kg), or both by gavage once daily. Glucose metabolism, the balance of α- and ß-cells, and mucin-2 expression were ameliorated by combined treatment of BBR and Sta, with stronger effects than upon treatment with BBR alone. The microbial diversity and richness were altered after combined treatment and after treatment with BBR alone. The abundance of Akkermansia muciniphila was increased by combined treatment compared to treatment with BBR alone, while the levels of the metabolite all-trans-heptaprenyl diphosphate were decreased and the levels of fumaric acid were increased, which both showed a strong correlation with A. muciniphila. In summary, BBR combined with Sta produced better glycometabolism than BBR alone through modulating gut microbiota and fecal metabolomics, and may aid in the development of a novel pharmaceutical strategy for treating Type 2 diabetes mellitus.
Asunto(s)
Berberina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Heces/química , Microbioma Gastrointestinal/efectos de los fármacos , Metabolómica/métodos , Oligosacáridos/uso terapéutico , Animales , Berberina/farmacología , Masculino , Ratones , Oligosacáridos/farmacologíaRESUMEN
OBJECTIVE: The aim of the study was to compare the efficacy of radial extracorporeal shock wave therapy and dry needling in the treatment of myofascial trigger points in the upper trapezius muscle. DESIGN: A total of 65 patients with myofascial trigger points were randomly divided into extracorporeal shock wave therapy group (n = 32) and dry needling group (n = 33). Patients received 3 wks of treatment at 1-wk intervals (in both groups). Visual analog scale, pressure pain threshold, Neck Disability Index, and shear modulus were evaluated before treatment, immediately after the first therapy, 1 mo, and 3 mos after the completion of the third therapy. RESULTS: Significant improvements of visual analog scale, pressure pain threshold, and Neck Disability Index scores were observed at all time points after treatment (P < 0.01) in both treatment groups. The shear modulus of myofascial trigger points was reduced in both dry needling group (P < 0.05) and extracorporeal shock wave therapy group (P < 0.01) immediately after the first treatment. Significant reductions in shear modulus were maintained up to 3-mo posttreatment in both groups (P < 0.01). There were no significant differences between the radial extracorporeal shock wave therapy group and dry needling group. CONCLUSIONS: The extracorporeal shock wave therapy is as effective as dry needling for relieving pain, improving function, and reducing shear modulus for patients with myofascial trigger points after a series of three treatments.
Asunto(s)
Punción Seca , Tratamiento con Ondas de Choque Extracorpóreas , Síndromes del Dolor Miofascial/terapia , Músculos Superficiales de la Espalda , Puntos Disparadores , Adulto , Diagnóstico por Imagen de Elasticidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndromes del Dolor Miofascial/diagnóstico , Dimensión del Dolor , Proyectos Piloto , Resultado del Tratamiento , Adulto JovenRESUMEN
Sangzhi alkaloids (SZ-A) are derived from traditional Chinese medicine Ramulus Mori, serving well as an innovative antidiabetic drug, due to α-glucosidase inhibition. To evaluate the potency of glucosidase inhibitory effect of SZ-A, the enzyme-based screening platforms, including sucrase, maltase and amylase were established, and IC50 was calculated. The effects of SZ-A on postprandial blood glucose at a single dose, oral sucrose, starch and glucose loading were determined in normal ICR mice and alloxan-induced hyperglycemic mice. To confirm the anti-diabetic effects of SZ-A on glucose and lipid metabolism after long-term administration, the postprandial and fasting blood glucose, serum insulin, urinary glucose levels, glycosylated serum proteins and blood lipid levels were determined in high-fat fed C57 obese mice (pre-diabetic HFC57 mice) and diabetic rats induced by streptozotocin (STZ). The Experimental Animal Welfare Ethics Committee of the Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College approved all of the protocols for this research. We found that SZ-A exhibited a significant inhibitory effect on the sucrase and maltase. SZ-A showed no effect on amylase. In normal ICR mice and alloxan-induced hyperglycemic mice, SZ-A at a single dose significantly delayed and reduced the peak of blood glucose after sucrose or starch loading, but showed no effect on the increase of blood glucose after glucose loading. In STZ diabetic rats, SZ-A significantly reduced the postprandial or fasting blood glucose levels, glycosylated serum proteins and urinary glucose. SZ-A also reduced serum triglyceride (TG) and cholesterol (TC) levels after 3 weeks of treatment. SZ-A ameliorated the postprandial blood glucose or the fasting blood glucose elevation, and reduced the incidence of hyperglycemia in HFC57 mice. SZ-A decreased the basal insulin level, improved insulin sensitivity, and ameliorated glucose intolerance in pre-diabetic HFC57 mice. Our results indicated that SZ-A had a novel inhibitory activity on α-glucosidase, especially on disaccharidases. SZ-A at a single dose significantly reduced the peak of blood glucose elevation and delayed the increase of blood glucose in normal and diabetic mice after disaccharide and polysaccharide loading. Long-term SZ-A treatment improved glucose and lipid metabolic profiles by delaying carbohydrate absorption from the intestine and reduced the postprandial blood glucose levels in both pre-diabetic and diabetic animal models. Therefore, SZ-A application may display a beneficial role in preventing the development and complications of diabetes.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Refined-JQ (JQ-R) is a mixture of refined extracts from three major herbal components of JinQi-JiangTang tablet: Coptis chinensis (Ranunculaceae), Astragalus membranaceus (Leguminosae), and Lonicera japonica (Caprifoliaceae). Our previous studies have indicated that JQ-R could decrease fasting blood glucose levels in diabetic mice and insulin resistance mice. Investigating the hypoglycemic effect of JQ-R on prediabetes has practical application value for preventing or delaying insulin resistance, impaired glucose tolerance and possibly the development of clinical diabetes. MATERIALS AND METHODS: The anti-diabetic potential of JQ-R was investigated using a high fat-diet (HFD)-induced obesity mouse model. C57BL/6J mice (HFD-C57 mice) were fed with high-fat diet for 4 months. HFD-C57 mice were treated with either JQ-R (administered intragastrically once daily for 4 weeks) or metformin (as positive control), and the effects of JQ-R on body weight, blood lipids, glucose metabolism, insulin sensitivity, and beta cell function were monitored. RESULTS: The body weight, serum cholesterol, and the Homeostasis Model Assessment ratio (insulin resistance index) were significantly reduced in JQ-R or metformin-treated mice, and the glucose tolerance was enhanced and insulin response was improved simultaneously. Moreover, both JQ-R and metformin could activate liver glycogen syntheses even under a relatively high glucose loading. Although glyconeogenesis was inhibited in the metformin treated mice, it was not observed in JQ-R treated mice. Similar to metformin, JQ-R could also improve the glucose infusion rate (GIR) in hyperglycemic clamp test. JQ-R was also shown to increase the levels of phosphorylated AMPKα and phosphorylated acetyl CoA carboxylase (ACC), similar to metformin. CONCLUSION: JQ-R could reduce HFD-induced insulin resistance by regulating glucose and lipid metabolism, increasing insulin sensitivity through activating the AMPK signaling pathway, and subsequently improving ß cell function. Therefore, JQ-R may offer an alternative in treating disorders associated with insulin resistance, such as prediabetes and T2DM.
Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Estado Prediabético/prevención & control , Animales , Glucemia , Grasas de la Dieta , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Hipoglucemiantes/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Soporte de PesoRESUMEN
Berberine, an isoquinoline alkaloid isolated from some Chinese medicinal herbs such as Coptidis rhizoma, has been used for the treatment of diarrhea and other gastrointestinal infections as an antibacterial drug in Chinese medicine. In recent years, it was reported to have beneficial effects on the metabolism disorders states of diabetes. The mechanisms involve many aspects of the diabetes, including regulating the blood cholesterol and triglyceride, lowering blood glucose, ameliorating the insulin resistant state and influencing the function of the pancreatic beta cell.
Asunto(s)
Berberina/farmacología , Glucemia/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Receptores de LDL/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Berberina/aislamiento & purificación , Coptis/química , Diabetes Mellitus/metabolismo , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Humanos , Secreción de Insulina , Enfermedades Metabólicas/metabolismo , Nicotinamida Fosforribosiltransferasa/biosíntesis , Nicotinamida Fosforribosiltransferasa/genética , Plantas Medicinales/química , Proteínas Quinasas/metabolismo , ARN Mensajero/metabolismo , Receptores de LDL/genética , Transducción de SeñalRESUMEN
Berberine, an isoquinoline alkaloid isolated from some Chinese medicinal herbs such as Coptidis rhizoma, has been used for the treatment of diarrhea and other gastrointestinal infections as an antibacterial drug in Chinese medicine. In recent years, it was reported to have beneficial effects on the metabolism disorders states of diabetes. The mechanisms involve many aspects of the diabetes, including regulating the blood cholesterol and triglyceride, lowering blood glucose, ameliorating the insulin resistant state and influencing the function of the pancreatic beta cell.