Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 126: 155099, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412665

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is a highly prevalent and fatal form of lung cancer. In China, Aconiti Lateralis Radix Praeparata (Fuzi in Chinese), derived from the lateral root of Aconitum carmichaeli Debx. (Ranunculaceae, Aconitum), is extensively prescribed to treat cancer in traditional medicine and clinical practice. However, the precise mechanism by which Fuzi treats NSCLC remains unknown. PURPOSE: This article aims to assess the efficacy of Fuzi against NSCLC and elucidate its underlying mechanism. METHODS: Marker ingredients of Fuzi decoction were quantified using UPLC-TSQ-MS. The effectiveness of Fuzi on NSCLC was evaluated using a xenograft mouse model. Subsequently, a comprehensive approach involving network pharmacology, serum metabolomics, and 16S rDNA sequencing was employed to investigate the anti-NSCLC mechanism of Fuzi. RESULTS: Pharmacological evaluation revealed significant tumour growth inhibition by Fuzi, accompanied by minimal toxicity. Network pharmacology identified 29 active Fuzi compounds influencing HIF-1, PI3K/Akt signalling, and central carbon metabolism in NSCLC. Integrating untargeted serum metabolomics highlighted 30 differential metabolites enriched in aminoacyl-tRNA biosynthesis, alanine, aspartate, and glutamate metabolism, and the tricarboxylic acid (TCA) cycle. Targeted serum metabolomics confirmed elevated glucose content and reduced levels of pyruvate, lactate, citrate, α-ketoglutarate, succinate, fumarate, and malate following Fuzi administration. Furthermore, 16S rDNA sequencing assay showed that Fuzi ameliorated the dysbiosis after tumorigenesis, decreased the abundance of Proteobacteria, and increased that of Firmicutes and Bacteriodetes. PICRUSt analysis revealed that Fuzi modulated the pentose phosphate pathway of the gut microbiota. Spearman correlation showed that Proteobacteria and Escherichia_Shigella accelerated the TCA cycle, whereas Bacteroidota, Bacteroides, and Lachnospiraceae_NK4A136_group suppressed the TCA cycle. CONCLUSIONS: This study firstly introduces a novel NSCLC mechanism involving Fuzi, encompassing energy metabolism and intestinal flora. It clarifies the pivotal role of the gut microbiota in treating NSCLC and modulating the TCA cycle. Moreover, these findings offer valuable insights for clinical practices and future research of Fuzi against NSCLC.


Asunto(s)
Aconitum , Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Ratones , Animales , Extractos Vegetales/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Disbiosis/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Neoplasias Pulmonares/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , ADN Ribosómico
2.
Front Pharmacol ; 13: 870282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662730

RESUMEN

Aconiti Lateralis Radix Praeparata (Fuzi in Chinese) is a traditional herbal medicine widely used in China and other Asian countries. In clinical practice, it is often used to treat heart failure, rheumatoid arthritis, and different kinds of pains. Fuzi extract and its active ingredients exert considerable anticancer, anti-inflammatory, and analgesic effects. The main chemical substances of Fuzi include alkaloids, polysaccharides, flavonoids, fatty acids, and sterols. Among of them, alkaloids and polysaccharides are responsible for the anticancer efficacy. Most bioactive alkaloids in Fuzi possess C19 diterpenoid mother nucleus and these natural products show great potential for cancer therapy. Moreover, polysaccharides exert extraordinary tumor-suppressive functions. This review comprehensively summarized the active ingredients, antineoplastic effects, and molecular mechanisms of Fuzi by searching PubMed, Web of Science, ScienceDirect, and CNKI. The anticancer effects are largely attributed to inducing apoptosis and autophagy, inhibiting proliferation, migration and invasion, regulating body immunity, affecting energy metabolism, as well as reversing multidrug resistance. Meanwhile, several signaling pathways and biological processes are mainly involved, such as NF-κB, EMT, HIF-1, p38 MAPK, PI3K/AKT/mTOR, and TCA cycle. Collectively, alkaloids and polysaccharides in Fuzi might serve as attractive therapeutic candidates for the development of anticancer drugs. This review would lay a foundation and provide a basis for further basic research and clinical application of Fuzi.

3.
Zhongguo Zhong Yao Za Zhi ; 46(1): 118-124, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33645060

RESUMEN

To establish the HPLC fingerprint and multi-component determination method of fried Glycyrrhizae Radix et Rhizoma pieces. HPLC analysis was performed on Thermo Acclaim ~(TM)120 C_(18) column(4.6 mm×250 mm, 5 µm). Acetonitrile-0.1% phosphoric acid aqueous solution was taken as the mobile phase for gradient elution. The flow rate was 1 mL·min~(-1),the column temperature was maintained at 30 ℃, and the detection wavelength was 237 nm and 360 nm. The similarity of 15 batches of fried Glycyrrhizae Radix et Rhizoma pieces was higher than 0.849, and 17 common peaks were identified. Liquiritin, isoliquiritin apioside, isoliquiritin, liquiritigenin, isoliquiritigenin and glycyrrhizic acid were identified; among them, the mass fractions of Liquiritin, isoliquiritin apioside, isoliquiritin, liquiritigenin, glycyrrhizic acid were were 0.519%-3.058%, 0.227%-0.389%, 0.070%-0.439%, 0.038%-0.173%, 1.381%-4.252%, respectively. According to the cluster analysis, the 15 batches of decoction pieces were classified into three categories; principal component analysis screened out four principal components, with the cumulative variance contribution rate of 86.630%, indicating that the principal components contained most information of original data. Partial least squares discriminant ana-lysis marked 6 differential components in the decoction pieces. The established fingerprint and multicomponent determination are stable and reliable, and can provide a reference for the quality control of Radix Glycyrrhizae Radix et Rhizomae and fried Glycyrrhizae Radix et Rhizoma pieces.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión , Glycyrrhiza , Extractos Vegetales , Control de Calidad
4.
PLoS One ; 10(7): e0134109, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26207739

RESUMEN

BACKGROUND AND PURPOSE: Magnetic resonance spectroscopy (MRS) constitutes a mainstream technique for characterizing biological samples. Benefiting from the separation of chemical shifts and J couplings, spatially localized two-dimensional (2D) J-resolved spectroscopy (JPRESS) shows better identification of complex metabolite resonances than one-dimensional MRS does and facilitates the extraction of J coupling information. However, due to variations of macroscopic magnetic susceptibility in biological samples, conventional JPRESS spectra generally suffer from the influence of field inhomogeneity. In this paper, we investigated the implementation of the localized 2D J-resolved spectroscopy based on intermolecular double-quantum coherences (iDQCs) on a 7 T MRI scanner. MATERIALS AND METHODS: A γ-aminobutyric acid (GABA) aqueous solution, an intact pig brain tissue, and a whole fish (Harpadon nehereus) were explored by using the localized iDQC J-resolved spectroscopy (iDQCJRES) method, and the results were compared to those obtained by using the conventional 2D JPRESS method. RESULTS: Inhomogeneous line broadening, caused by the variations of macroscopic magnetic susceptibility in the detected biological samples (the intact pig brain tissue and the whole fish), degrades the quality of 2D JPRESS spectra, particularly when a large voxel is selected and some strongly structured components are included (such as the fish spinal cord). By contrast, high-resolution 2D J-resolved information satisfactory for metabolite analyses can be obtained from localized 2D iDQCJRES spectra without voxel size limitation and field shimming. From the contrastive experiments, it is obvious that the spectral information observed in the localized iDQCJRES spectra acquired from large voxels without field shimming procedure (i.e. in inhomogeneous fields) is similar to that provided by the JPRESS spectra acquired from small voxels after field shimming procedure (i.e. in relatively homogeneous fields). CONCLUSION: The localized iDQCJRES method holds advantage for recovering high-resolution 2D J-resolved information from inhomogeneous fields caused by external non-ideal field condition or internal macroscopic magnetic susceptibility variations in biological samples, and it is free of voxel size limitation and time-consuming field shimming procedure. This method presents a complementary way to the conventional JPRESS method for MRS measurements on MRI systems equipped with broad inner bores, and may provide a promising tool for in vivo MRS applications.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Animales , Encéfalo/metabolismo , Peces , Porcinos , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA