Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(6): e27829, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533054

RESUMEN

Background: Denglao Qingguan decoction (DLQGD) has been extensively utilized for the treatment of colds, demonstrating significant therapeutic efficacy. Human Coronavirus 229E (HCoV-229E) is considered a crucial etiological agent of influenza. However, the specific impact and underlying mechanisms of DLQGD on HCoV-229E remain poorly understood. Methods: Active ingredients and targets information of DLQGD were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), literature search, and Swiss ADEM database. The Genecard database was used to collect HCoV-229E related targets. We built an "ingredient-target network" through Cytoscape. Protein - Protein interaction (PPI) networks were mapped using the String database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were enriched using the DAVID database. Then, we used molecular docking techniques to verify the binding activity between the core compounds and the core gene targets. Finally, in vitro experiments were conducted to validate DLQGD's antiviral activity against HCoV-229E and assess its anti-inflammatory effects. Results: In total, we identified 227 active components in DLQGD. 18 key targets involved in its activity against HCoV-229E. Notably, the core active ingredients including quercetin, luteolin, kaempferol, ß-sitosterol, and apigenin, and the core therapeutic targets were CXCL8, RELA, MAPK14, NFKB1, and CXCL10, all associated with HCoV-229E. KEGG enrichment results included IL-17 signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and so on. The core active ingredients and the core therapeutic targets and Human Aminopeptidase N (ANPEP) all showed good binding activity by molecular docking verification. In vitro, DLQGD exhibited anti-HCoV-229E activity and anti-inflammatory effects. Conclusion: Our study suggests that DLQGD has both effects of anti-HCoV-229E and anti-inflammatory. The core active ingredients (quercetin, luteolin, kaempferol, ß-sitosterol, apigenin) and the core therapeutic targets (CXCL8, RELA, MAPK14, NFKB1, CXCL10) may play key roles in the pharmacological action of DLQGD against HCoV-229E.

2.
J Ethnopharmacol ; 298: 115653, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35995276

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lianhuaqingwen capsule (LH-C) is a traditional Chinese medicine (TCM), consisting of two prescriptions, Ma-xing-shi-gan-tang (MXSGT) and Yinqiao San. It has been proven to have antiviral, antibacterial, and immunomodulatory effects in recent years. Clinically, it is commonly used in the treatment of respiratory tract infections. AIM OF THE STUDY: It was demonstrated in our previous studies that LH-C has an effect of antivirus and inhibits influenza virus-induced bacterial adhesion to respiratory epithelial cells through down-regulation of cell adhesion molecules in vitro. However, LH-C's effect against influenza-induced secondary bacterial infection in animal studies remains unclear. Therefore, in the present study, we established a mouse model of infection with non-lethal doses of influenza virus(H1N1) and secondary infection of Staphylococcus aureus (S. aureus), to investigate the potential effects of LH-C. METHODS: Experiments were carried out on BALB/c mice infecting non-lethal doses of H1N1 and non-lethal doses of S. aureus, and the viral, and bacterial doses were determined by observing and recording changes in the body weight, mortality, and pathological changes. Moreover, after LH-C treatment, the survival rate, body weight, lung index, viral titers, bacterial colonies, pathological changes, and the inflammatory cytokines in the mouse model have all been systematically determined. RESULTS: In the superinfection models of H1N1 and S. aureus, the mortality rate was 100% in groups of mice infected with 20 PFU/50 µL of H1N1 and 105 CFU/mL of S. aureus, 20 PFU/50 µL of H1N1 and 106 CFU/mL of S. aureus, 4 PFU/50 µL of H1N1 and 106 CFU/mL of S. aureus. The mortality rate was 50% in the group of mice infected with 4 PFU/50 µL of H1N1 and 105 CFU/mL of S. aureus. The mortality rate was 37.5% in the group of mice infected with 20 PFU/50 µL of H1N1 alone and in the group of mice infected with 2 PFU/50 µL of H1N1 and 106 CFU/mL of S. aureus. The mortality rate in the group of mice infected with 2 PFU/50 µL of H1N1 and 106 CFU/mL of S. aureus was 30%. The infected mice of 2 PFU/50 µL of H1N1 and 106 CFU/mL of S. aureus had a weight loss of nearly 10%. About the histopathological changes in the lung tissue of infection mice, severe lung lesions were found in the superinfection models. LH-C improved survival in the superinfected mice, significantly reduced lung index, lowered viral titers and bacterial loads, and alleviated lung damage. It reduced lung inflammation by down-regulating mRNA expression levels of inflammatory mediators like IL-6, IL-1ß, IL-10, TNF-α, IFN-ß, MCP-1, and RANTES. CONCLUSIONS: We found that superinfection from non-lethal doses of S. aureus following non-lethal doses of H1N1 was equally fatal in mice, confirming the severity of secondary infections. The ability of LH-C to alleviate lung injury resulting from secondary S. aureus infection induced by H1N1 was confirmed. These findings provided a further assessment of LH-C, suggesting that LH-C may have good therapeutic efficacy in influenza secondary bacterial infection disease.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Infecciones Estafilocócicas , Sobreinfección , Animales , Peso Corporal , Medicamentos Herbarios Chinos , Humanos , Gripe Humana/tratamiento farmacológico , Pulmón , Ratones , Ratones Endogámicos BALB C , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología , Staphylococcus aureus , Sobreinfección/patología
3.
Phytomedicine ; 95: 153874, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34923232

RESUMEN

BACKGROUND: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) pose a huge threat to human public health, no specific treatment is available. Jinzhen granule (JZ) is a traditional eight ingredients-Chinese medicine with prominent efficacy for treating viral-induced diseases. However, little is known about the antiviral effect and mechanism of JZ against SARS-CoV-2 and HCoV-229E. PURPOSE: This study aimed to reveal the antiviral effects of JZ against SARS-CoV-2 and HCoV-229E, and to further explore the underlying mechanisms regulating the host immune response. METHODS: The chromatographic separation of JZ was performed using a Shimadzu analytical high-performance liquid chromatograph with UV detection and Alltech ELSD 2000ES. We conducted cytopathic effect (CPE) and plaque reduction assays to evaluate the antiviral effect of JZ. A lethal human angiotensin converting enzyme 2 (hACE2) transgenic mouse model of SARS-CoV-2 was established to determine the protective effect of JZ on mortality and lung virus titers. Real-time quantitative PCR assays were used to analyze the expression of proinflammatory cytokines in vitro and in vivo. Western blotting was further performed to determine the activities on regulating the nuclear factor kappa B (NF-κB)/MAPK pathway. Finally, mitochondrial membrane potential assays, flow cytometry analysis and western blotting were used to assess the anti-apoptotic potency toward HCoV-229E infection. RESULTS: The results showed that 13 chemical components were identified and five peaks were determined and quantitated (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g). We found that JZ exerted inhibitory potency against SARS-CoV-2 and HCoV-229E in vitro by using CPE and plaque reduction assays, and it was further found that JZ protected mice infected by SARS-CoV-2 from death and inhibited lung virus titers. JZ also significantly decreased the induction of inflammatory cytokines (IL-1α, IL-6, CCL-5 and MIP-1ß), similar to the observed in vitro effect. Moreover, JZ suppressed the release of inflammatory cytokines in vitro and it decreased the protein expression of p-p38 MAPK, p-JNK, p-NF-κB p65 and p-IκBα induced by HCoV-229E and increased the expression of IκBα. Notably, JZ significantly protected HCoV-229E-infected Huh-7 cells from mitochondrial damage and decreased apoptotic cells. The activation of the mitochondria-mediated apoptotic pathway was inhibited by JZ, as shown by the reduced expression of cleaved caspase-9, caspase-3 and p-PARP. CONCLUSIONS: In conclusion, JZ (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g) exhibited antiviral activities against SARS-CoV-2 and HCoV-229E by regulating the NF-κB/MAPK pathway and the mitochondria-mediated apoptotic pathway. These findings demonstrated the efficacy of JZ against CoVs and suggested JZ treatment as a novel clinical therapeutic strategy for COVID-19.


Asunto(s)
Antivirales , Coronavirus Humano 229E , Medicamentos Herbarios Chinos/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacología , COVID-19 , Coronavirus Humano 229E/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , FN-kappa B
4.
Brain Res ; 1196: 59-64, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18234162

RESUMEN

Ghrelin exerts potent stimulatory effects on food intake. It is assumed to increase feeding by binding at growth hormone secretagogue receptors (GHS-R), the only sites of action for this gastric hormone identified to date. Initially, the distribution of ghrelin binding sites could only be determined from expression patterns of GHS-R mRNA or the use of immunohistochemical techniques to examine c-fos expression. However, the characterisation of a novel radioligand ([(125)I-his(9)]-ghrelin), has enabled the distribution of GHS-R receptor protein to be directly demonstrated. Here, using quantitative autoradiography, we investigate the distribution and density of ghrelin receptors in the rodent hypothalamus. Specific binding was identified in the appetite-regulating arcuate nucleus, ventromedial hypothalamic nucleus, paraventricular nucleus, dorsomedial hypothalamic nucleus and the lateral hypothalamic area corresponding to the previously reported distribution pattern of GHS-R mRNA. Surprisingly, variations in receptor density were not identified in any of these binding sites upon a change in nutritional status, despite relevant alterations in plasma ghrelin levels being identified. We suggest that this may relate to the paradigm employed to modify nutritional status in the study or could indicate that peripheral ghrelin is unlikely to be the major source of ghrelin that acts in many hypothalamic sites.


Asunto(s)
Autorradiografía , Hipotálamo/metabolismo , Receptores de Ghrelina/metabolismo , Análisis de Varianza , Animales , Unión Competitiva/efectos de los fármacos , Unión Competitiva/fisiología , Ayuno/fisiología , Ghrelina/química , Ghrelina/metabolismo , Hipotálamo/diagnóstico por imagen , Masculino , Hormonas Peptídicas , ARN Mensajero/metabolismo , Radiografía , Ratas , Ratas Wistar , Receptores de Ghrelina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA