Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(5): e2305023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084002

RESUMEN

Destruction of cartilage due to the abnormal remodeling of subchondral bone (SB) leads to osteoarthritis (OA), and restoring chondro-bone metabolic homeostasis is the key to the treatment of OA. However, traditional intra-articular injections for the treatment of OA cannot directly break through the cartilage barrier to reach SB. In this study, the hydrothermal method is used to synthesize ultra-small size (≈5 nm) selenium-doped carbon quantum dots (Se-CQDs, SC), which conjugated with triphenylphosphine (TPP) to create TPP-Se-CQDs (SCT). Further, SCT is dynamically complexed with hyaluronic acid modified with aldehyde and methacrylic anhydride (AHAMA) to construct highly permeable micro/nano hydrogel microspheres (SCT@AHAMA) for restoring chondro-bone metabolic homeostasis. In vitro experiments confirmed that the selenium atoms scavenged reactive oxygen species (ROS) from the mitochondria of mononuclear macrophages, inhibited osteoclast differentiation and function, and suppressed early chondrocyte apoptosis to maintain a balance between cartilage matrix synthesis and catabolism. In vivo experiments further demonstrated that the delivery system inhibited osteoclastogenesis and H-vessel invasion, thereby regulating the initiation and process of abnormal bone remodeling and inhibiting cartilage degeneration in SB. In conclusion, the micro/nano hydrogel microspheres based on ultra-small quantum dots facilitate the efficient penetration of articular SB and regulate chondro-bone metabolism for OA treatment.


Asunto(s)
Cartílago Articular , Osteoartritis , Selenio , Humanos , Microesferas , Hidrogeles/metabolismo , Selenio/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo
2.
Adv Sci (Weinh) ; 10(33): e2303015, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37857552

RESUMEN

Postmenopausal osteoporosis (PMO) is often accompanied by neuroendocrine changes in the hypothalamus, which closely associates with the microbial diversity, community composition, and intestinal metabolites of gut microbiota (GM). With the emerging role of GM in bone metabolism, a potential neuroendocrine signal neuropeptide Y (NPY) mediated brain-gut-bone axis has come to light. Herein, it is reported that exogenous overexpression of NPY reduced bone formation, damaged bone microstructure, and up-regulated the expressions of pyroptosis-related proteins in subchondral cancellous bone in ovariectomized (OVX) rats, but Y1 receptor antagonist (Y1Ra) reversed these changes. In addition, it is found that exogenous overexpression of NPY aggravated colonic inflammation, impaired intestinal barrier integrity, enhanced intestinal permeability, and increased serum lipopolysaccharide (LPS) in OVX rats, and Y1Ra also reversed these changes. Most importantly, NPY and Y1Ra modulated the microbial diversity and changed the community composition of GM in OVX rats, and thereby affecting the metabolites of GM (e.g., LPS) entering the blood circulation. Moreover, fecal microbiota transplantation further testified the effect of NPY-mediated GM changes on bone. In vitro, LPS induced pyroptosis, reduced viability, and inhibited differentiation of osteoblasts. The study demonstrated the existence of NPY-mediated brain-gut-bone axis and it might be a novel emerging target to treat PMO.


Asunto(s)
Microbioma Gastrointestinal , Osteoporosis Posmenopáusica , Femenino , Humanos , Ratas , Animales , Neuropéptido Y/metabolismo , Lipopolisacáridos , Hipotálamo/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 993253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452325

RESUMEN

Osteoporosis (OP) is a systemic disease characterized by bone metabolism imbalance and bone microstructure destruction, which causes serious social and economic burden. At present, the diagnosis and treatment of OP mainly rely on imaging combined with drugs. However, the existing pathogenic mechanisms, diagnosis and treatment strategies for OP are not clear and effective enough, and the disease progression that cannot reflect OP further restricts its effective treatment. The application of metabolomics has facilitated the study of OP, further exploring the mechanism and behavior of bone cells, prevention, and treatment of the disease from various metabolic perspectives, finally realizing the possibility of a holistic approach. In this review, we focus on the application of metabolomics in OP research, especially the newer systematic application of metabolomics and treatment with herbal medicine and their extracts. In addition, the prospects of clinical transformation in related fields are also discussed. The aim of this study is to highlight the use of metabolomics in OP research, especially in exploring the pathogenesis of OP and the therapeutic mechanisms of natural herbal medicine, for the benefit of interdisciplinary researchers including clinicians, biologists, and materials engineers.


Asunto(s)
Metabolómica , Osteoporosis , Humanos , Osteoporosis/diagnóstico , Osteoporosis/tratamiento farmacológico , Osteocitos , Fitoterapia , Progresión de la Enfermedad
4.
Small ; 16(50): e2005433, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33230977

RESUMEN

The ideal bone repair material should firstly recognize and recruit osteoblast precursor cells to initiate the repair process, then promote the differentiation of osteoblasts and accelerate the mineralization of the extracellular matrix (ECM). Here, a bioinspired staged bone regeneration strategy which loads bone morphogenetic protein2 (BMP2 )-modified black phosphorus (BP@BMP2 ) nanosheets to a polylactic acid (PLLA) electrospun fibrous scaffold, with a combination of recruiting osteoblast precursor cells and biomineralization properties for bone regeneration, is constructed successfully by micro-sol electrospinning technique. BP, acting as carriers, can not only provide a negative surface and a strong BMP2 loading ability but can also promote biomineralization in a 3D manner on the electrospun fibrous scaffold, while the BMP2 is to target osteoblast precursor cells for recruitment and osteogenesis differentiation, which endows BP@BMP2 nanosheets with staged bone regeneration ability. Furthermore, the in vitro and in vivo data showed that the BP@BMP2 loaded electrospun fibrous scaffold have good biocompatibility and a strong osteogenesis ability resulting in rapid new bone tissue regeneration. Altogether, this newly developed bioinspired BMP2 -modified BP electrospun fiber with staged bone regeneration properties via recruiting osteoblast precursor cells to the bone injured site and accelerating biomineralization can be a promising approach in physiologic bone repair.


Asunto(s)
Biomineralización , Andamios del Tejido , Proteína Morfogenética Ósea 2 , Regeneración Ósea , Diferenciación Celular , Osteoblastos , Osteogénesis , Fósforo
5.
Eur J Pharmacol ; 437(3): 139-45, 2002 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-11890901

RESUMEN

Neuroprotective effects of N-acetylaspartylglutamate (NAAG), the precursor of glutamate and a selective agonist at the Group II metabotropic glutamate (mGlu) receptor, against hypoxic-ischemic brain injury were examined in a neonatal rat model of cerebral hypoxia-ischemia. The neonatal hypoxia-ischemia procedure (unilateral carotid artery ligation followed by exposure to an 8% oxygen hypoxic condition for 1.5 h) was performed in 7-day-old rat pups. Following unilateral carotid artery ligation, NAAG (0.5 to 20 mg/kg, i.p.) was administered before or after the hypoxic exposure. Brain injury was examined 1-week later by weight reduction in the ipsilateral brain and by neuron density in the hippocampal CA1 area. In the saline-treated rat, neonatal hypoxia-ischemia resulted in severe brain injury as indicated by a 24% reduction in the ipsilateral brain weight. Low doses of NAAG (2-10 mg/kg, but not 0.5 mg/kg), administered before or even if 1 h after the hypoxic exposure, greatly reduced hypoxia-ischemia-induced brain injury (3.8-14.2% reduction in the ipsilateral brain weight). A high dose of NAAG (20 mg/kg) was ineffective. While L(+)-2-Amino-4-phosphonobutyric acid (L-AP4) and trans-[1S,3R]-1-Amino-cyclopentane-1, 3-dicarboxylic acid (t-ACPD) were unable to provide protection against hypoxic-ischemic brain injury, 2-(phosphonomethyl) pentanedioic acid (2-PMPA), an inhibitor of N-acetylated alpha-linked acidic dipeptidase (NAALADase), which hydrolyzes endogenous NAAG into N-acetyl-aspartate and glutamate, significantly reduced neonatal hypoxia-ischemia-induced brain injury. (alphaS)-alpha-Amino-alpha-[(1S, 2S)-2-carboxycyclopropyl]-9H-xanthine-9-propanoic acid (LY341495), a selective antagonist at the mGlu2/3 receptor, prevented the neuroprotective effect of NAAG. Neuron density data measured in the hippocampal CA1 area confirmed that ipsilateral brain weight reduction was a valid measure for hypoxic-ischemic brain injury. Neonatal hypoxia-ischemia stimulated an elevation of cyclic AMP (cAMP) concentration in the saline-treated rat brain. NAAG, L-AP4 and t-ACPD all significantly decreased hypoxia-ischemia-induced elevation of cAMP. LY341495 blocked the effect of NAAG, but not of L-AP4 or t-ACPD, on hypoxia-ischemia-stimulated cAMP elevation. The overall results suggest that the neuroprotective effect of NAAG is largely associated with activation of mGlu2/3 receptor.


Asunto(s)
Dipéptidos/farmacología , Hipoxia-Isquemia Encefálica/prevención & control , Fármacos Neuroprotectores/farmacología , Aminoácidos/farmacología , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Carboxipeptidasas/antagonistas & inhibidores , AMP Cíclico/metabolismo , Cicloleucina/análogos & derivados , Cicloleucina/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glutamato Carboxipeptidasa II , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Compuestos Organofosforados/farmacología , Propionatos/farmacología , Ratas , Ratas Sprague-Dawley , Xantenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA