Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(6): e0274323, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921483

RESUMEN

IMPORTANCE: The integration of metabolomics-based approaches into the discovery pipeline has enabled improved mining and prioritization of prolific secondary metabolite producers such as endophytic fungi. However, relying on automated untargeted analysis tools might lead to misestimation of the chemical complexity harbored in these organisms. Our study emphasizes the importance of isolation and structure elucidation of the respective metabolites in addition to deep metabolome analysis for the correct interpretation of untargeted metabolomics approaches such as molecular networking. Additionally, it encourages the further exploration of endophytic fungi from traditional medicinal plants for the discovery of natural products.


Asunto(s)
Plantas Medicinales , Policétidos , Endófitos , Lactonas/metabolismo , Policétidos/metabolismo , Metabolómica , Hongos/metabolismo
2.
Front Microbiol ; 12: 716523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603244

RESUMEN

Bioactive secondary metabolite production from endophytic fungi has gained a recurring research focus in recent decades as these microorganisms represent an unexplored biological niche for their diverse biotechnological potential. Despite this focus, studies involving tropical endophytes remain scarce, particularly those isolated from medicinal plants of these ecosystems. In addition, the state of the art of the pharmaceutical industry has experienced stagnation in the past 30years, which has pushed pathogenic infections to get one step ahead, resulting in the development of resistance to existing treatments. Here, five fungal endophytes were isolated from the medicinal plant Otoba gracilipes (Myristicaceae), which corresponded to the genera Xylaria and Diaporthe, and screened to demonstrate the promissory potential of these microorganisms for producing bioactive secondary metabolites with broad-spectrum antibacterial activities. Thus, the evaluation of crude organic extracts obtained from the mycelia and exhaust medium allowed the elucidation of Xylaria sp. and Diaporthe endophytica potential toward providing crude extracellular extracts with promising bioactivities against reference strains of Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923), according to the determined half-maximum inhibitory concentration (IC50) with values down to 3.91 and 10.50mg/ml against each pathogen, respectively. Follow-up studies provided insights into the polarity nature of bioactive compounds in the crude extracts through bioactivity guided fractionation using a polymeric resin absorbent alternative extraction procedure. In addition, evaluation of the co-culturing methods demonstrated how this strategy can enhance endophytes biosynthetic capacity and improve their antibacterial potential with a 10-fold decrease in the IC50 values against both pathogens compared to the obtained values in the preliminary evaluations of Xylaria sp. and D. endophytica crude extracts. These results support the potential of Colombian native biodiversity to provide new approaches concerning the global emergence of antibiotics resistance and future production of undiscovered compounds different from the currently used antibiotics classes and simultaneously call for the value of preserving native habitats due to their promising ecosystemic applications in the biotechnological and pharmaceutical industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA