Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 12(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37190079

RESUMEN

Oxidative stress is a contributing factor to Parkinson's disease (PD). Considering the prevalence of sporadic PD, environmental exposures are postulated to increase reactive oxygen species and either incite or exacerbate neurodegeneration. We previously determined that exposure to the common soil bacterium, Streptomyces venezuelae (S. ven), enhanced oxidative stress and mitochondrial dysfunction in Caenorhabditis elegans, leading to dopaminergic (DA) neurodegeneration. Here, S. ven metabolite exposure in C. elegans was followed by RNA-Seq analysis. Half of the differentially identified genes (DEGs) were associated with the transcription factor DAF-16 (FOXO), which is a key node in regulating stress response. Our DEGs were enriched for Phase I (CYP) and Phase II (UGT) detoxification genes and non-CYP Phase I enzymes associated with oxidative metabolism, including the downregulated xanthine dehydrogenase gene, xdh-1. The XDH-1 enzyme exhibits reversible interconversion to xanthine oxidase (XO) in response to calcium. S. ven metabolite exposure enhanced XO activity in C. elegans. The chelation of calcium diminishes the conversion of XDH-1 to XO and results in neuroprotection from S. ven exposure, whereas CaCl2 supplementation enhanced neurodegeneration. These results suggest a defense mechanism that delimits the pool of XDH-1 available for interconversion to XO, and associated ROS production, in response to metabolite exposure.


Asunto(s)
Caenorhabditis elegans , Xantina Deshidrogenasa , Animales , Xantina Deshidrogenasa/metabolismo , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Xantina Oxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
ACS Chem Neurosci ; 8(9): 2039-2055, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28628299

RESUMEN

The lack of therapies for neurodegenerative diseases arises from our incomplete understanding of their underlying cellular toxicities and the limited number of predictive model systems. It is critical that we develop approaches to identify novel targets and lead compounds. Here, a phenotypic screen of yeast proteinopathy models identified dihydropyrimidine-thiones (DHPM-thiones) that selectively rescued the toxicity caused by ß-amyloid (Aß), the peptide implicated in Alzheimer's disease. Rescue of Aß toxicity by DHPM-thiones occurred through a metal-dependent mechanism of action. The bioactivity was distinct, however, from that of the 8-hydroxyquinoline clioquinol (CQ). These structurally dissimilar compounds strongly synergized at concentrations otherwise not competent to reduce toxicity. Cotreatment ameliorated Aß toxicity by reducing Aß levels and restoring functional vesicle trafficking. Notably, these low doses significantly reduced deleterious off-target effects caused by CQ on mitochondria at higher concentrations. Both single and combinatorial treatments also reduced death of neurons expressing Aß in a nematode, indicating that DHPM-thiones target a conserved protective mechanism. Furthermore, this conserved activity suggests that expression of the Aß peptide causes similar cellular pathologies from yeast to neurons. Our identification of a new cytoprotective scaffold that requires metal-binding underscores the critical role of metal phenomenology in mediating Aß toxicity. Additionally, our findings demonstrate the valuable potential of synergistic compounds to enhance on-target activities, while mitigating deleterious off-target effects. The identification and prosecution of synergistic compounds could prove useful for developing AD therapeutics where combination therapies may be required to antagonize diverse pathologies.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Clioquinol/farmacología , Metales/metabolismo , Fármacos Neuroprotectores/farmacología , Tionas/farmacología , Péptidos beta-Amiloides/toxicidad , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Clioquinol/toxicidad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Iones/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Tionas/toxicidad , Levaduras
3.
Proc Natl Acad Sci U S A ; 111(38): E3976-85, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201965

RESUMEN

Phosphatidylserine decarboxylase, which is embedded in the inner mitochondrial membrane, synthesizes phosphatidylethanolamine (PE) and, in some cells, synthesizes the majority of this important phospholipid. Normal levels of PE can decline with age in the brain. Here we used yeast and worms to test the hypothesis that low levels of PE alter the homeostasis of the Parkinson disease-associated protein α-synuclein (α-syn). In yeast, low levels of PE in the phosphatidylserine decarboxylase deletion mutant (psd1Δ) cause decreased respiration, endoplasmic reticulum (ER) stress, a defect in the trafficking of the uracil permease, α-syn accumulation and foci, and a slow growth phenotype. Supplemental ethanolamine (ETA), which can be converted to PE via the Kennedy pathway enzymes in the ER, had no effect on respiration, whereas, in contrast, this metabolite partially eliminated ER stress, decreased α-syn foci formation, and restored growth close to that of wild-type cells. In Caenorhabditis elegans, RNAi depletion of phosphatidylserine decarboxylase in dopaminergic neurons expressing α-syn accelerates neurodegeneration, which supplemental ETA rescues. ETA fails to rescue this degeneration in worms that undergo double RNAi depletion of phosphatidylserine decarboxylase (psd-1) and choline/ETA phosphotransferase (cept-1), which encodes the last enzyme in the CDP-ETA Kennedy pathway. This finding suggests that ETA exerts its protective effect by boosting PE through the Kennedy pathway. Overall, a low level of PE causes ER stress, disrupts vesicle trafficking, and causes α-syn to accumulate; such cells likely die from a combination of ER stress and excessive accumulation of α-syn.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Homeostasis , Enfermedad de Parkinson/metabolismo , Fosfatidiletanolaminas , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Carboxiliasas/genética , Carboxiliasas/metabolismo , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/genética , Saccharomyces cerevisiae/genética , alfa-Sinucleína/genética
4.
Dis Model Mech ; 7(2): 233-43, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24311730

RESUMEN

Molecular mechanisms underlying neurodegenerative diseases converge at the interface of pathways impacting cellular stress, protein homeostasis and aging. Targeting the intrinsic capacities of neuroprotective proteins to restore neuronal function and/or attenuate degeneration represents a potential means toward therapeutic intervention. The product of the human DYT1 gene, torsinA, is a member of the functionally diverse AAA+ family of proteins and exhibits robust molecular-chaperone-like activity, both in vitro and in vivo. Although mutations in DYT1 are associated with a rare form of heritable generalized dystonia, the native function of torsinA seems to be cytoprotective in maintaining the cellular threshold to endoplasmic reticulum (ER) stress. Here we explore the potential for torsinA to serve as a buffer to attenuate the cellular consequences of misfolded-protein stress as it pertains to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). The selective vulnerability of motor neurons to degeneration in ALS mouse models harboring mutations in superoxide dismutase (SOD1) has been found to correlate with regional-specific ER stress in brains. Using Caenorhabditis elegans as a system to model ER stress, we generated transgenic nematodes overexpressing either wild-type or mutant human SOD1 to evaluate their relative impact on ER stress induction in vivo. These studies revealed a mutant-SOD1-specific increase in ER stress that was further exacerbated by changes in temperature, all of which was robustly attenuated by co-expression of torsinA. Moreover, through complementary behavioral analysis, torsinA was able to restore normal neuronal function in mutant G85R SOD1 animals. Furthermore, torsinA targeted mutant SOD1 for degradation via the proteasome, representing mechanistic insight on the activity that torsinA has on aggregate-prone proteins. These results expand our understanding of proteostatic mechanisms influencing neuronal dysfunction in ALS, while simultaneously highlighting the potential for torsinA as a novel target for therapeutic development.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Caenorhabditis elegans/fisiología , Estrés del Retículo Endoplásmico , Chaperonas Moleculares/metabolismo , Actividad Motora , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Superóxido Dismutasa/genética , Sinapsis/metabolismo , Sinapsis/patología , Transmisión Sináptica
5.
Science ; 342(6161): 979-83, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24158909

RESUMEN

α-Synuclein (α-syn) is a small lipid-binding protein implicated in several neurodegenerative diseases, including Parkinson's disease, whose pathobiology is conserved from yeast to man. There are no therapies targeting these underlying cellular pathologies, or indeed those of any major neurodegenerative disease. Using unbiased phenotypic screens as an alternative to target-based approaches, we discovered an N-aryl benzimidazole (NAB) that strongly and selectively protected diverse cell types from α-syn toxicity. Three chemical genetic screens in wild-type yeast cells established that NAB promoted endosomal transport events dependent on the E3 ubiquitin ligase Rsp5/Nedd4. These same steps were perturbed by α-syn itself. Thus, NAB identifies a druggable node in the biology of α-syn that can correct multiple aspects of its underlying pathology, including dysfunctional endosomal and endoplasmic reticulum-to-Golgi vesicle trafficking.


Asunto(s)
Bencimidazoles/farmacología , Citoprotección , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Redes Reguladoras de Genes/efectos de los fármacos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/genética , alfa-Sinucleína/metabolismo , Animales , Bencimidazoles/química , Caenorhabditis elegans , Células Cultivadas , Evaluación Preclínica de Medicamentos , Ubiquitina-Proteína Ligasas Nedd4 , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Ratas , Saccharomyces cerevisiae/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
6.
Dis Model Mech ; 3(5-6): 386-96, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20223934

RESUMEN

Movement disorders represent a significant societal burden for which therapeutic options are limited and focused on treating disease symptomality. Early-onset torsion dystonia (EOTD) is one such disorder characterized by sustained and involuntary muscle contractions that frequently cause repetitive movements or abnormal postures. Transmitted in an autosomal dominant manner with reduced penetrance, EOTD is caused in most cases by the deletion of a glutamic acid (DeltaE) in the DYT1 (also known as TOR1A) gene product, torsinA. Although some patients respond well to anticholingerics, therapy is primarily limited to either neurosurgery or chemodenervation. As mutant torsinA (DeltaE) expression results in decreased torsinA function, therapeutic strategies directed toward enhancement of wild-type (WT) torsinA activity in patients who are heterozygous for mutant DYT1 may restore normal cellular functionality. Here, we report results from the first-ever screen for candidate small molecule therapeutics for EOTD, using multiple activity-based readouts for torsinA function in Caenorhabditis elegans, subsequent validation in human DYT1 patient fibroblasts, and behavioral rescue in a mouse model of DYT1 dystonia. We exploited the nematode to rapidly discern chemical effectors of torsinA and identified two classes of antibiotics, quinolones and aminopenicillins, which enhance WT torsinA activity in two separate in vivo assays. Representative molecules were assayed in EOTD patient fibroblasts for improvements in torsinA-dependent secretory function, which was improved significantly by ampicillin. Furthermore, a behavioral defect associated with an EOTD mouse knock-in model was also rescued following administration of ampicillin. These combined data indicate that specific small molecules that enhance torsinA activity represent a promising new approach toward therapeutic development for EOTD, and potentially for other diseases involving the processing of mutant proteins.


Asunto(s)
Modelos Animales de Enfermedad , Distonía Muscular Deformante/metabolismo , Chaperonas Moleculares/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Edad de Inicio , Ampicilina/química , Ampicilina/farmacología , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Evaluación Preclínica de Medicamentos , Distonía Muscular Deformante/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Ratones , Modelos Moleculares , Fármacos Neuroprotectores/farmacología , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/análisis , Relación Estructura-Actividad
7.
Dis Model Mech ; 3(3-4): 194-208, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20038714

RESUMEN

alpha-Synuclein (alpha-syn) is a small lipid-binding protein involved in vesicle trafficking whose function is poorly characterized. It is of great interest to human biology and medicine because alpha-syn dysfunction is associated with several neurodegenerative disorders, including Parkinson's disease (PD). We previously created a yeast model of alpha-syn pathobiology, which established vesicle trafficking as a process that is particularly sensitive to alpha-syn expression. We also uncovered a core group of proteins with diverse activities related to alpha-syn toxicity that is conserved from yeast to mammalian neurons. Here, we report that a yeast strain expressing a somewhat higher level of alpha-syn also exhibits strong defects in mitochondrial function. Unlike our previous strain, genetic suppression of endoplasmic reticulum (ER)-to-Golgi trafficking alone does not suppress alpha-syn toxicity in this strain. In an effort to identify individual compounds that could simultaneously rescue these apparently disparate pathological effects of alpha-syn, we screened a library of 115,000 compounds. We identified a class of small molecules that reduced alpha-syn toxicity at micromolar concentrations in this higher toxicity strain. These compounds reduced the formation of alpha-syn foci, re-established ER-to-Golgi trafficking and ameliorated alpha-syn-mediated damage to mitochondria. They also corrected the toxicity of alpha-syn in nematode neurons and in primary rat neuronal midbrain cultures. Remarkably, the compounds also protected neurons against rotenone-induced toxicity, which has been used to model the mitochondrial defects associated with PD in humans. That single compounds are capable of rescuing the diverse toxicities of alpha-syn in yeast and neurons suggests that they are acting on deeply rooted biological processes that connect these toxicities and have been conserved for a billion years of eukaryotic evolution. Thus, it seems possible to develop novel therapeutic strategies to simultaneously target the multiple pathological features of PD.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Mitocondrias/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Animales , Antiparkinsonianos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Evaluación Preclínica de Medicamentos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Perfilación de la Expresión Génica , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/ultraestructura , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/patología , Transporte de Proteínas/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Rotenona/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Relación Estructura-Actividad , alfa-Sinucleína/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA