Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 354: 120258, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387343

RESUMEN

Global sustainable development faces several challenges in addressing the needs of a growing population. Regarding food industries, the heightening pressure to meet these needs has resulted in increased waste generation. Thus, recognising these wastes as valuable resources is crucial to integrating sustainable models into current production systems. For instance, the current 24 billion tons of nutrient-rich livestock wastewater (LW) generated yearly could be recovered and valorised via biological uptake through microalgal biomass. Microalgae-based livestock wastewater treatment (MbLWT) has emerged as an effective technology for nutrient recovery, specifically targeting carbon, nitrogen, and phosphorus. However, the viability and efficacy of these systems rely on the characteristics of LW, including organic matter and ammonium concentration, content of suspended solids, and microbial load. Thus, this systematic literature review aims to provide guidance towards implementing an integral MbLWT system for nutrient control and recovery, discussing several pre-treatments used in literature to overcome the challenges regarding LW as a suitable media for microalgae cultivation.


Asunto(s)
Microalgas , Purificación del Agua , Animales , Ganado , Aguas Residuales , Nutrientes , Tecnología , Biomasa , Nitrógeno , Fósforo
2.
Environ Sci Pollut Res Int ; 30(51): 111369-111381, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814047

RESUMEN

More stringent discharge standards have led to the development of an alternative nutrient recovery system from wastewater. Microalgae cultivation in wastewater treatment works has presented considerable promise from the perspective of sustainable resource management. Growth kinetics models are useful tools to optimize nutrient recovery from wastewater by algal uptake. Therefore, this research aims to identify the growth kinetics of Chlamydomonas reinhardtii under both heterotrophic and phototrophic conditions with different nutrient concentrations that typify those found in wastewater treatment works. In addition, the effects of macronutrients (C, N, and P) on heterotrophic and phototrophic microalgae growth and nutrient recovery were studied. Greater specific growth rates were achieved under heterotrophic conditions than in phototrophic cultivation. The maximum specific growth rates and nutrient recovery efficiencies were achieved at 5 mg P L-1 under both heterotrophic and phototrophic growth conditions. Nitrate was the preferred form of nitrogen source under heterotrophic conditions, while nitrogen sources did not present any significant influences in the phototrophic cultivation. Specific growth rates reported for both heterotrophic and phototrophic microalgae at lower carbon concentrations (3.10 d-1 and 0.46 d-1, sequentially) were higher than those at higher carbon concentrations (1.95 d-1 and 0.22 d-1, respectively). C. reinhardtii presented an extreme capacity to adapt and grow at all experimental conditions tested in heterotrophic and phototrophic cultivations.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Aguas Residuales , Nitrógeno/farmacología , Fósforo/farmacología , Carbono/farmacología , Nutrientes , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA