Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422819

RESUMEN

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Asunto(s)
Alelos , Ácido Aspártico/metabolismo , Encefalopatías/genética , Proteínas de Unión a Ácidos Grasos/genética , Malatos/metabolismo , Mutación , Animales , Niño , Preescolar , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Masculino , Ratones , Secuenciación del Exoma
2.
Proc Natl Acad Sci U S A ; 115(4): E620-E629, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311329

RESUMEN

CHARGE syndrome-which stands for coloboma of the eye, heart defects, atresia of choanae, retardation of growth/development, genital abnormalities, and ear anomalies-is a severe developmental disorder with wide phenotypic variability, caused mainly by mutations in CHD7 (chromodomain helicase DNA-binding protein 7), known to encode a chromatin remodeler. The genetic lesions responsible for CHD7 mutation-negative cases are unknown, at least in part because the pathogenic mechanisms underlying CHARGE syndrome remain poorly defined. Here, we report the characterization of a mouse model for CHD7 mutation-negative cases of CHARGE syndrome generated by insertional mutagenesis of Fam172a (family with sequence similarity 172, member A). We show that Fam172a plays a key role in the regulation of cotranscriptional alternative splicing, notably by interacting with Ago2 (Argonaute-2) and Chd7. Validation studies in a human cohort allow us to propose that dysregulation of cotranscriptional alternative splicing is a unifying pathogenic mechanism for both CHD7 mutation-positive and CHD7 mutation-negative cases. We also present evidence that such splicing defects can be corrected in vitro by acute rapamycin treatment.


Asunto(s)
Empalme Alternativo , Síndrome CHARGE/etiología , Modelos Animales de Enfermedad , Proteínas/genética , Animales , Antibióticos Antineoplásicos/uso terapéutico , Proteínas Argonautas/metabolismo , Síndrome CHARGE/metabolismo , Células COS , Chlorocebus aethiops , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Cresta Neural/embriología , Embarazo , Conejos , Ratas , Sirolimus/uso terapéutico
3.
Am J Hum Genet ; 98(2): 363-72, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833329

RESUMEN

Genetic studies of intellectual disability and identification of monogenic causes of obesity in humans have made immense contribution toward the understanding of the brain and control of body mass. The leptin > melanocortin > SIM1 pathway is dysregulated in multiple monogenic human obesity syndromes but its downstream targets are still unknown. In ten individuals from six families, with overlapping 6q16.1 deletions, we describe a disorder of variable developmental delay, intellectual disability, and susceptibility to obesity and hyperphagia. The 6q16.1 deletions segregated with the phenotype in multiplex families and were shown to be de novo in four families, and there was dramatic phenotypic overlap among affected individuals who were independently ascertained without bias from clinical features. Analysis of the deletions revealed a ∼350 kb critical region on chromosome 6q16.1 that encompasses a gene for proneuronal transcription factor POU3F2, which is important for hypothalamic development and function. Using morpholino and mutant zebrafish models, we show that POU3F2 lies downstream of SIM1 and controls oxytocin expression in the hypothalamic neuroendocrine preoptic area. We show that this finding is consistent with the expression patterns of POU3F2 and related genes in the human brain. Our work helps to further delineate the neuro-endocrine control of energy balance/body mass and demonstrates that this molecular pathway is conserved across multiple species.


Asunto(s)
Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , Obesidad/genética , Factores del Dominio POU/genética , Eliminación de Secuencia , Adolescente , Adulto , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Índice de Masa Corporal , Línea Celular , Niño , Preescolar , Cromosomas Humanos Par 6/genética , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Persona de Mediana Edad , Oxitocina/metabolismo , Factores del Dominio POU/metabolismo , Linaje , Fenotipo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Adulto Joven , Pez Cebra
4.
Am J Hum Genet ; 90(5): 836-46, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22541557

RESUMEN

Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea-cycle disorder, and leads to deficiency of both ureagenesis and NO production. Subjects with ASA have been reported to develop long-term complications such as hypertension and neurocognitive deficits despite early initiation of therapy and the absence of documented hyperammonemia. In order to distinguish the relative contributions of the hepatic urea-cycle defect from those of the NO deficiency to the phenotype, we performed liver-directed gene therapy in a mouse model of ASA. Whereas the gene therapy corrected the ureagenesis defect, the systemic hypertension in mice could be corrected by treatment with an exogenous NO source. In an ASA subject with severe hypertension refractory to antihypertensive medications, monotherapy with NO supplements resulted in the long-term control of hypertension and a decrease in cardiac hypertrophy. In addition, the NO therapy was associated with an improvement in some neuropsychological parameters pertaining to verbal memory and nonverbal problem solving. Our data show that ASA, in addition to being a classical urea-cycle disorder, is also a model of congenital human NO deficiency and that ASA subjects could potentially benefit from NO supplementation. Hence, NO supplementation should be investigated for the long-term treatment of this condition.


Asunto(s)
Aciduria Argininosuccínica/tratamiento farmacológico , Aciduria Argininosuccínica/fisiopatología , Terapia Genética , Óxido Nítrico/deficiencia , Óxido Nítrico/farmacología , Adolescente , Animales , Arginina/sangre , Argininosuccinatoliasa/genética , Aciduria Argininosuccínica/complicaciones , Aciduria Argininosuccínica/genética , Preescolar , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Hígado/enzimología , Masculino , Ratones , Óxido Nítrico/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA