Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Monit Assess ; 195(7): 834, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37303005

RESUMEN

Meteorological (MET) data is a crucial input for environmental exposure models. While modeling exposure potential using geospatial technology is a common practice, existing studies infrequently evaluate the impact of input MET data on the level of uncertainty on output results. The objective of this study is to determine the effect of various MET data sources on the potential exposure susceptibility predictions. Three sources of wind data are compared: The North American Regional Reanalysis (NARR) database, meteorological aerodrome reports (METARs) from regional airports, and data from local MET weather stations. These data sources are used as inputs into a machine learning (ML) driven GIS Multi-Criteria Decision Analysis (GIS-MCDA) geospatial model to predict potential exposure to abandoned uranium mine sites in the Navajo Nation. Results indicate significant variations in results derived from different wind data sources. After validating the results from each source using the National Uranium Resource Evaluation (NURE) database in a geographically weighted regression (GWR), METARs data combined with the local MET weather station data showed the highest accuracy, with an average R2 of 0.74. We conclude that local direct measurement-based data (METARs and MET data) produce a more accurate prediction than the other sources evaluated in the study. This study has the potential to inform future data collection methods, leading to more accurate predictions and better-informed policy decisions surrounding environmental exposure susceptibility and risk assessment.


Asunto(s)
Fuentes de Información , Uranio , Monitoreo del Ambiente , Aeropuertos , Exposición a Riesgos Ambientales
2.
Environ Sci Technol ; 55(14): 9949-9957, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34235927

RESUMEN

Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 µM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 µm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 µm) at 100 µM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.


Asunto(s)
Uranio , Carbono , Carbón Mineral , Polvo/análisis , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , Uranio/análisis , Uranio/toxicidad
3.
J Toxicol Environ Health A ; 84(1): 31-48, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33050837

RESUMEN

Thousands of abandoned uranium mines (AUMs) exist in the western United States. Due to improper remediation, windblown dusts generated from AUMs are of significant community concern. A mobile inhalation lab was sited near an AUM of high community concern ("Claim 28") with three primary objectives: to (1) determine the composition of the regional ambient particulate matter (PM), (2) assess meteorological characteristics (wind speed and direction), and (3) assess immunological and physiological responses of mice after exposures to concentrated ambient PM (or CAPs). C57BL/6 and apolipoprotein E-null (ApoE-/-) mice were exposed to CAPs in AirCARE1 located approximately 1 km to the SW of Claim 28, for 1 or 28 days for 4 hr/day at approximately 80 µg/m3 CAPs. Bronchoalveolar lavage fluid (BALF) analysis revealed a significant influx of neutrophils after a single-day exposure in C57BL/6 mice (average PM2.5 concentration = 68 µg/m3). Lungs from mice exposed for 1 day exhibited modest increases in Tnfa and Tgfb mRNA levels in the CAPs exposure group compared to filtered air (FA). Lungs from mice exposed for 28 days exhibited reduced Tgfb (C57BL/6) and Tnfa (ApoE-/-) mRNA levels. Wind direction was typically moving from SW to NE (away from the community) and, while detectable in all samples, uranium concentrations in the PM2.5 fraction were not markedly different from published-reported values. Overall, exposure to CAPs in the region of the Blue GAP Tachee's Claim-28 uranium mine demonstrated little evidence of overt pulmonary injury or inflammation or ambient air contamination attributed to uranium or vanadium.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación/efectos adversos , Minería , Material Particulado/toxicidad , Uranio , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subcrónica
4.
Part Fibre Toxicol ; 17(1): 29, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611356

RESUMEN

BACKGROUND: Commercial uranium mining on the Navajo Nation has subjected communities on tribal lands in the Southwestern United States to exposures from residual environmental contamination. Vascular health effects from these ongoing exposures are an active area of study. There is an association between residential mine-site proximity and circulating biomarkers in residents, however, the contribution of mine-site derived wind-blown dusts on vascular and other health outcomes is unknown. To assess neurovascular effects of mine-site derived dusts, we exposed mice using a novel exposure paradigm, the AirCARE1 mobile inhalation laboratory, located 2 km from an abandoned uranium mine, Claim 28 in Blue Gap Tachee, AZ. Mice were exposed to filtered air (FA) (n = 6) or concentrated ambient particulate matter (CAPs) (n = 5) for 2 wks for 4 h per day. RESULTS: To assess miRNA differential expression in cultured mouse cerebrovascular cells following particulate matter (PM) exposure (average: 96.6 ± 60.4 µg/m3 for all 4 h exposures), the serum cumulative inflammatory potential (SCIP) assay was employed. MiRNA sequencing was then performed in cultured mouse cerebrovascular endothelial cells (mCECs) to evaluate transcriptional changes. Results indicated 27 highly differentially expressed (p < 0.01) murine miRNAs, as measured in the SCIP assay. Gene ontology (GO) pathway analysis revealed notable alterations in GO enrichment related to the cytoplasm, protein binding and the cytosol, while significant KEGG pathways involved pathways in cancer, axon guidance and Wnt signaling. Expression of these 27 identified, differentially expressed murine miRNAs were then evaluated in the serum. Nine of these miRNAs (~ 30%) were significantly altered in the serum and 8 of those miRNAs demonstrated the same directional change (either upregulation or downregulation) as cellular miRNAs, as measured in the SCIP assay. Significantly upregulated miRNAs in the CAPs exposure group included miRNAs in the let-7a family. Overexpression of mmu-let-7a via transfection experiments, suggested that this miRNA may mediate mCEC barrier integrity following dust exposure. CONCLUSIONS: Our data suggest that mCEC miRNAs as measured in the SCIP assay show similarity to serum-borne miRNAs, as approximately 30% of highly differentially expressed cellular miRNAs in the SCIP assay were also found in the serum. While translocation of miRNAs via exosomes or an alternative mechanism is certainly possible, other yet-to-be-identified factors in the serum may be responsible for significant miRNA differential expression in endothelium following inhaled exposures. Additionally, the most highly upregulated murine miRNAs in the CAPs exposure group were in the let-7a family. These miRNAs play a prominent role in cell growth and differentiation and based on our transfection experiments, mmu-let-7a may contribute to cerebrovascular mCEC alterations following inhaled dust exposure.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Material Particulado/toxicidad , Animales , Biomarcadores/sangre , Diferenciación Celular , Proliferación Celular , Endotelio , Exposición por Inhalación , Ratones , MicroARNs , Sudoeste de Estados Unidos , Uranio
5.
Toxicol Sci ; 164(1): 101-114, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660078

RESUMEN

Exposure to windblown particulate matter (PM) arising from legacy uranium (U) mine sites in the Navajo Nation may pose a human health hazard due to their potentially high metal content, including U and vanadium (V). To assess the toxic impact of PM derived from Claim 28 (a priority U mine) compared with background PM, and consider the putative role of metal species U and V. Two representative sediment samples from Navajo Nation sites (Background PM and Claim 28 PM) were obtained, characterized in terms of chemistry and morphology, and fractioned to the respirable (≤ 10 µm) fraction. Mice were dosed with either PM sample, uranyl acetate, or vanadyl sulfate via aspiration (100 µg), with assessments of pulmonary and vascular toxicity 24 h later. Particulate matter samples were also examined for in vitro effects on cytotoxicity, oxidative stress, phagocytosis, and inflammasome induction. Claim 28 PM10 was highly enriched with U and V and exhibited a unique nanoparticle ultrastructure compared with background PM10. Claim 28 PM10 exhibited enhanced pulmonary and vascular toxicity relative to background PM10. Both U and V exhibited complementary pulmonary inflammatory potential, with U driving a classical inflammatory cytokine profile (elevated interleukin [IL]-1ß, tumor necrosis factor-α, and keratinocyte chemoattractant/human growth-regulated oncogene) while V preferentially induced a different cytokine pattern (elevated IL-5, IL-6, and IL-10). Claim 28 PM10 was more potent than background PM10 in terms of in vitro cytotoxicity, impairment of phagocytosis, and oxidative stress responses. Resuspended PM10 derived from U mine waste exhibit greater cardiopulmonary toxicity than background dusts. Rigorous exposure assessment is needed to gauge the regional health risks imparted by these unremediated sites.


Asunto(s)
Corazón/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanopartículas/toxicidad , Material Particulado/toxicidad , Uranio/toxicidad , Compuestos de Vanadio/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Supervivencia Celular/efectos de los fármacos , Citocinas/análisis , Sedimentos Geológicos/química , Humanos , Pulmón/inmunología , Masculino , Ratones Endogámicos C57BL , Minería , Nanopartículas/análisis , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Material Particulado/análisis , Células THP-1 , Uranio/análisis , Compuestos de Vanadio/análisis , Vasodilatación/efectos de los fármacos
6.
J Toxicol Environ Health A ; 81(13): 535-548, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29641933

RESUMEN

More than 500 abandoned uranium (U) mines within the Navajo Nation contribute U, arsenic (As) and other metals to groundwater, soil and potentially air through airborne transport. The adverse cardiovascular health effects attributed to cumulative exposure to these metals remains uncertain. The aim of this study was to examine whether environmental exposure to these metals may promote or exacerbate the oxidation of low-density lipoprotein (LDL) cholesterol in this Native American population. The correlation of cardiovascular biomarkers (oxidized LDL (oxLDL) and C-reactive protein (CRP)) from a Navajo cohort (n = 252) with mean annual As and U intakes from water and urine metals was estimated using linear regression. Proof-of-concept assays were performed to investigate whether As and U directly oxidize human LDL. Mean annual As intake from water was positively and significantly associated with oxLDL, but not CRP in this study population, while U intake estimates were negatively associated with oxLDL. In an acellular system, As, but not U, directly oxidized the apolipoprotein B-100 component of purified human LDL. Neither metal promoted lipid peroxidation of the LDL particle. Both the population and lab results are consistent with the hypothesis that As promotes oxidation of LDL, a crucial step in vascular inflammation and chronic vascular disease. Conversely, for outcomes related to U, negative associations were observed between U intake and oxLDL, and U only minimally altered human LDL in direct exposure experiments. Only urine U was correlated with CRP, whereas no other metals in water or urine were apparently reliable predictors of this inflammatory marker.


Asunto(s)
Arsénico/orina , Proteína C-Reactiva/metabolismo , Exposición a Riesgos Ambientales , Contaminantes Ambientales/orina , Lipoproteínas LDL/sangre , Uranio/orina , Adulto , Anciano , Biomarcadores/orina , LDL-Colesterol/metabolismo , Estudios Transversales , Femenino , Humanos , Indígenas Norteamericanos , Masculino , Persona de Mediana Edad , New Mexico , Oxidación-Reducción , Medición de Riesgo
7.
J Expo Sci Environ Epidemiol ; 27(4): 365-371, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28120833

RESUMEN

Members of the Navajo Nation, who possess a high prevalence of cardiometabolic disease, reside near hundreds of local abandoned uranium mines (AUM), which contribute uranium, arsenic and other metals to the soil, water and air. We recently reported that hypertension is associated with mine waste exposures in this population. Inflammation is a major player in the development of numerous vascular ailments. Our previous work establishing that specific transcriptional responses of cultured endothelial cells treated with human serum can reveal relative circulating inflammatory potential in a manner responsive to pollutant exposures, providing a model to assess responses associated with exposure to these waste materials in this population. To investigate a potential link between exposures to AUM and serum inflammatory potential in affected communities, primary human coronary artery endothelial cells were treated for 4 h with serum provided by Navajo study participants (n=145). Endothelial transcriptional responses of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and chemokine ligand 2 (CCL2) were measured. These transcriptional responses were then linked to AUM exposure metrics, including surface area-weighted AUM proximity and estimated oral intake of metals. AUM proximity strongly predicted endothelial transcriptional responses to serum including CCL2, VCAM-1 and ICAM-1 (P<0.0001 for each), whereas annual water intakes of arsenic and uranium did not, even after controlling for all major effect modifiers. Inflammatory potential associated with proximity to AUMs, but not oral intake of specific metals, additionally suggests a role for inhalation exposure as a contributor to cardiovascular disease.


Asunto(s)
Quimiocina CCL2/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Uranio/efectos adversos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Adulto , Anciano , Arsénico/efectos adversos , Arsénico/análisis , Bioensayo , Quimiocina CCL2/sangre , Vasos Coronarios , Agua Potable , Células Endoteliales/metabolismo , Femenino , Sistemas de Información Geográfica , Humanos , Indígenas Norteamericanos , Exposición por Inhalación , Molécula 1 de Adhesión Intercelular/sangre , Entrevistas como Asunto , Masculino , Persona de Mediana Edad , Minería , Análisis de Regresión , Uranio/análisis , Molécula 1 de Adhesión Celular Vascular/sangre
8.
Toxicol Appl Pharmacol ; 305: 40-45, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27286659

RESUMEN

Ozone (O3)-related cardiorespiratory effects are a growing public health concern. Ground level O3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O3-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O2) or hypoxia (10.0% O2), followed by a 4-h exposure to either 1ppm O3 or filtered air (FA). As an additional experimental intervention fasudil (20mg/kg) was administered intraperitoneally prior to and after O3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O3-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Contaminantes Atmosféricos/toxicidad , Lesión Pulmonar/tratamiento farmacológico , Ozono/toxicidad , Inhibidores de Proteínas Quinasas/uso terapéutico , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , Animales , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/patología , Hiperreactividad Bronquial/fisiopatología , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Hipoxia/patología , Hipoxia/fisiopatología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Lesión Pulmonar/fisiopatología , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Función Ventricular Derecha/efectos de los fármacos , Presión Ventricular/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores
9.
Res Rep Health Eff Inst ; (178): 5-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24377210

RESUMEN

Epidemiologic and toxicologic studies were carried out in concert to provide complementary insights into the compositional features of ambient particulate matter (PM*) that produce cardiovascular effects. In the epidemiologic studies, we made use of cohort data from two ongoing studies--the Multi-Ethnic Study of Atherosclerosis (MESA) and the Women's Health Initiative--Observational Study (WHI-OS)--to investigate subclinical markers of atherosclerosis and clinical cardiovascular events. In the toxicologic study, we used the apolipoprotein E null (ApoE(-/-)) hypercholesterolemic mouse model to assess cardiovascular effects of inhalation exposure to various atmospheres containing laboratory-generated pollutants. In the epidemiologic studies, individual-level residential concentrations of fine PM, that is, PM with an aerodynamic diameter of 2.5 microm or smaller (PM2.5), PM2.5 components (primarily elemental carbon [EC] and organic carbon [OC], silicon, and sulfur but also sulfate, nitrate, nickel, vanadium, and copper), and the gaseous pollutants sulfur dioxide and nitrogen dioxide were estimated using spatiotemporal modeling and other exposure estimation approaches. In the MESA cohort data, evidence for associations with increased carotid intima-media thickness (CIMT) was found to be strongest for PM2.5, OC, and sulfur, as well as for copper in more limited analyses; the evidence for this was found to be weaker for silicon, EC, and the other components and gases. Similarly, in the WHI-OS cohort data, evidence for associations with incidence of cardiovascular mortality and cardiovascular events was found to be good for OC and sulfur, respectively, and for PM2.5; the evidence for this was found to be weaker for EC and silicon. Source apportionment based on extensive monitoring data in the six cities in the MESA analyses indicated that OC represented secondary formation processes as well as primary gasoline and biomass emissions, that sulfur represented largely secondary inorganic aerosols, and that copper represented brake dust and diesel emissions. In the toxicologic study, hypercholesterolemic mice were exposed for 50 days to atmospheres containing mixed vehicular engine emissions (MVE) consisting of mixed gasoline and diesel engine exhaust or to MVE-derived gases only (MVEG). Mice were also exposed to atmospheres containing sulfate, nitrate, or road dust, either alone or mixed with MVE or MVEG. Sulfate alone or in combination with MVE was associated with increased aortic reactivity. All exposures to atmospheres containing MVE (including a combination of MVE with other PM) were associated with increases in plasma and aortic oxidative stress; exposures to atmospheres containing only sulfate or nitrate were not. Exposure to MVE and to MVEG combinations except those containing road dust resulted in increased monocyte/macrophage sequestration in aortic plaque (a measure of plaque inflammation). Exposure to all atmospheres except those containing nitrate was associated with enhanced aortic vasoconstriction. Exposure to the MVEG was an independent driver of lipid peroxidation, matrix metalloproteinase (MMP) activation, and vascular inflammation. The epidemiologic and toxicologic study designs were intended to complement each other. The epidemiologic studies provided evidence in real-world human settings, and the toxicologic study directly assessed the biologic effects of various pollutant mixtures (in a way that is not possible in epidemiologic studies) by examining endpoints that probably underlie the subclinical and clinical cardiovascular endpoints examined in the epidemiologic studies. The epidemiologic studies were not suited to determining whether the observed associations were caused by direct effects of individual pollutants or by the mixtures in which individual pollutants are found. These studies were consistent in finding that OC and sulfate had the strongest evidence for associations with the cardiovascular disease endpoints, with much weaker evidence for EC and silicon. Both OC and sulfate reflected a large secondary aerosol component. Results from the toxicologic study indicated, for the most part, that MVE and mixtures of MVE and MVEG with other PM pollutants were important in producing the toxic cardiovascular effects found in the study. Further work on the effects of pollutant mixtures and secondary aerosols should allow better understanding of the pollution components and sources most responsible for the adverse cardiovascular effects of air pollution exposure.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Monitoreo del Ambiente/estadística & datos numéricos , Material Particulado/toxicidad , Animales , Estudios de Cohortes , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Humanos , Masculino , Ratones , Estados Unidos/epidemiología
10.
Environ Health Perspect ; 119(1): 98-103, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20870565

RESUMEN

BACKGROUND AND OBJECTIVE: Increased air pollutants correlate with increased incidence of cardiovascular disease potentially due to vascular dysfunction. We have reported that acute diesel engine exhaust (DE) exposure enhances vasoconstriction and diminishes acetylcholine (ACh)-induced dilation in coronary arteries in a nitric oxide synthase (NOS)-dependent manner. We hypothesize that acute DE inhalation leads to endothelial dysfunction by uncoupling NOS. METHODS: Rats inhaled fresh DE (300 µg particulate matter/m3) or filtered air for 5 hr. After off-gassing, intraseptal coronary arteries were isolated and dilation to ACh recorded using videomicroscopy. RESULTS: Arteries from DE-exposed animals dilated less to ACh than arteries from air-exposed animals. NOS inhibition did not affect ACh dilation in control arteries but increased dilation in the DE group, suggesting NOS does not normally contribute to ACh-induced dilation in coronary arteries but does contribute to endothelial dysfunction after DE inhalation. Cyclooxygenase (COX) inhibition did not affect ACh dilation in the DE group, but combined inhibition of NOS and COX diminished dilation in both groups and eliminated intergroup differences, suggesting that the two pathways interact. Superoxide scavenging increased ACh dilation in DE arteries, eliminating differences between groups. Tetrahydrobiopterin (BH4) supplementation with sepiapterin restored ACh-mediated dilation in the DE group in a NOS-dependent manner. Superoxide generation (dihydroethidium staining) was greater in DE arteries, and superoxide scavenging, BH4 supplementation, or NOS inhibition reduced the signal in DE but not air arteries. CONCLUSION: Acute DE exposure appears to uncouple NOS, increasing reactive oxygen species generation and causing endothelial dysfunction, potentially because of depletion of BH4 limiting its bioavailability.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Vasos Coronarios/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Óxido Nítrico Sintasa/metabolismo , Emisiones de Vehículos/toxicidad , Acetilcolina/metabolismo , Animales , Arteriolas/efectos de los fármacos , Arteriolas/enzimología , Arteriolas/metabolismo , Vasos Coronarios/enzimología , Vasos Coronarios/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Masculino , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA