Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biosens Bioelectron ; 220: 114826, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36371959

RESUMEN

Nicotinamide riboside (NR) is a form of vitamin B3 and is one of the most studied compounds for the restoration of cellular NAD+ levels demonstrating clinical potential in many metabolic and age-related disorders. Despite its wide commercial availability as a powerful nutraceutical, our understanding of NR uptake by different cells and tissues is greatly limited by the lack of noninvasive in vivo imaging tools limiting its clinical translation. Here, we report the development and validation of a bioluminescent NR uptake probe (BiNR) for non-invasive longitudinal imaging of NR uptake both in vitro and in vivo. In addition, we optimized an assay that allows monitoring of NR flux without the need to transfect cells with the luciferase gene, enabling the use of the BiNR probe in clinical samples, as demonstrated with human T cells. Lastly, we used BiNR to investigate the role of NR uptake in cancer prevalence and metastases formation in triple negative breast cancer (TNBC) animal model. Our results demonstrate that NR supplementation results in a significant increase in cancer prevalence and metastases of TNBC to the brain. These results outline the important role of powerful nutraceuticals like NR in cancer metabolism and the need to personalize their use in certain patient populations.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama Triple Negativas , Animales , Humanos , NAD , Niacinamida/metabolismo , Compuestos de Piridinio
2.
Cell Mol Life Sci ; 79(8): 463, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918544

RESUMEN

Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.


Asunto(s)
NAD , Niacinamida , Animales , Modelos Animales de Enfermedad , Ratones , Niacinamida/análogos & derivados , Niacinamida/farmacología , Niacinamida/uso terapéutico , Compuestos de Piridinio/uso terapéutico
3.
Metabolites ; 12(7)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35888754

RESUMEN

The last decade has seen a strong proliferation of therapeutic strategies for the treatment of metabolic and age-related diseases based on increasing cellular NAD+ bioavailability. Among them, the dietary supplementation with NAD+ precursors-classically known as vitamin B3-has received most of the attention. Multiple molecules can act as NAD+ precursors through independent biosynthetic routes. Interestingly, eukaryote organisms have conserved a remarkable ability to utilize all of these different molecules, even if some of them are scarcely found in nature. Here, we discuss the possibility that the conservation of all of these biosynthetic pathways through evolution occurred because the different NAD+ precursors might serve specialized purposes.

4.
Nutrients ; 14(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35807932

RESUMEN

Through evolution, eukaryote organisms have developed the ability to use different molecules as independent precursors to generate nicotinamide adenine dinucleotide (NAD+), an essential molecule for life. However, whether these different precursors act in an additive or complementary manner is not truly well understood. Here, we have evaluated how combinations of different NAD+ precursors influence intracellular NAD+ levels. We identified dihydronicotinic acid riboside (NARH) as a new NAD+ precursor in hepatic cells. Second, we demonstrate how NARH, but not any other NAD+ precursor, can act synergistically with nicotinamide riboside (NR) to increase NAD+ levels in cultured cells and in mice. Finally, we demonstrate that the large increase in NAD+ prompted by the combination of these two precursors is due to their chemical interaction and conversion to dihydronicotinamide riboside (NRH). Altogether, this work demonstrates for the first time that NARH can act as a NAD+ precursor in mammalian cells and how different NAD+ precursors can interact and influence each other when co-administered.


Asunto(s)
NAD , Niacinamida , Animales , Mamíferos , Ratones , Niacinamida/análogos & derivados , Compuestos de Piridinio
5.
Mol Metab ; 30: 192-202, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31767171

RESUMEN

OBJECTIVE: A decay in intracellular NAD+ levels is one of the hallmarks of physiological decline in normal tissue functions. Accordingly, dietary supplementation with NAD+ precursors can prevent, alleviate, or even reverse multiple metabolic complications and age-related disorders in diverse model organisms. Within the constellation of NAD+ precursors, nicotinamide riboside (NR) has gained attention due to its potent NAD+ biosynthetic effects in vivo while lacking adverse clinical effects. Nevertheless, NR is not stable in circulation, and its utilization is rate-limited by the expression of nicotinamide riboside kinases (NRKs). Therefore, there is a strong interest in identifying new effective NAD+ precursors that can overcome these limitations. METHODS: Through a combination of metabolomics and pharmacological approaches, we describe how NRH, a reduced form of NR, serves as a potent NAD+ precursor in mammalian cells and mice. RESULTS: NRH acts as a more potent and faster NAD+ precursor than NR in mammalian cells and tissues. Despite the minor structural difference, we found that NRH uses different steps and enzymes to synthesize NAD+, thus revealing a new NRK1-independent pathway for NAD+ synthesis. Finally, we provide evidence that NRH is orally bioavailable in mice and prevents cisplatin-induced acute kidney injury. CONCLUSIONS: Our data identify a new pathway for NAD+ synthesis and classify NRH as a promising new therapeutic strategy to enhance NAD+ levels.


Asunto(s)
NAD/biosíntesis , NAD/metabolismo , Niacinamida/análogos & derivados , Animales , Línea Celular , Masculino , Ratones , Niacinamida/metabolismo , Niacinamida/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol) , Compuestos de Piridinio , Ratas
6.
Nat Commun ; 10(1): 4291, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541116

RESUMEN

Supplementation with the NAD+ precursor nicotinamide riboside (NR) ameliorates and prevents a broad array of metabolic and aging disorders in mice. However, little is known about the physiological role of endogenous NR metabolism. We have previously shown that NR kinase 1 (NRK1) is rate-limiting and essential for NR-induced NAD+ synthesis in hepatic cells. To understand the relevance of hepatic NR metabolism, we generated whole body and liver-specific NRK1 knockout mice. Here, we show that NRK1 deficiency leads to decreased gluconeogenic potential and impaired mitochondrial function. Upon high-fat feeding, NRK1 deficient mice develop glucose intolerance, insulin resistance and hepatosteatosis. Furthermore, they are more susceptible to diet-induced liver DNA damage, due to compromised PARP1 activity. Our results demonstrate that endogenous NR metabolism is critical to sustain hepatic NAD+ levels and hinder diet-induced metabolic damage, highlighting the relevance of NRK1 as a therapeutic target for metabolic disorders.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hepatopatías/prevención & control , Niacinamida/análogos & derivados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Animales , Glucemia , Daño del ADN , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad/genética , Intolerancia a la Glucosa , Hepatocitos/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado/metabolismo , Hepatopatías/genética , Hepatopatías/patología , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NAD/metabolismo , Niacinamida/genética , Niacinamida/metabolismo , Niacinamida/farmacología , Compuestos de Piridinio
7.
Br J Pharmacol ; 176(17): 3250-3263, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31166006

RESUMEN

BACKGROUND AND PURPOSE: Quinic acid (QA) is an abundant natural compound from plant sources which may improve metabolic health. However, little attention has been paid to its effects on pancreatic beta-cell functions, which contribute to the control of metabolic health by lowering blood glucose. Strategies targeting beta-cell signal transduction are a new approach for diabetes treatment. This study investigated the efficacy of QA to stimulate beta-cell function by targeting the basic molecular machinery of metabolism-secretion coupling. EXPERIMENTAL APPROACH: We measured bioenergetic parameters and insulin exocytosis in a model of insulin-secreting beta-cells (INS-1E), together with Ca2+ homeostasis, using genetically encoded sensors, targeted to different subcellular compartments. Islets from mice chronically infused with QA were also assessed. KEY RESULTS: QA triggered transient cytosolic Ca2+ increases in insulin-secreting cells by mobilizing Ca2+ from intracellular stores, such as endoplasmic reticulum. Following glucose stimulation, QA increased glucose-induced mitochondrial Ca2+ transients. We also observed a QA-induced rise of the NAD(P)H/NAD(P)+ ratio, augmented ATP synthase-dependent respiration, and enhanced glucose-stimulated insulin secretion. QA promoted beta-cell function in vivo as islets from mice infused with QA displayed improved glucose-induced insulin secretion. A diet containing QA improved glucose tolerance in mice. CONCLUSIONS AND IMPLICATIONS: QA modulated intracellular Ca2+ homeostasis, enhancing glucose-stimulated insulin secretion in both INS-1E cells and mouse islets. By increasing mitochondrial Ca2+ , QA activated the coordinated stimulation of oxidative metabolism, mitochondrial ATP synthase-dependent respiration, and therefore insulin secretion. Bioactive agents raising mitochondrial Ca2+ in pancreatic beta-cells could be used to treat diabetes.


Asunto(s)
Productos Biológicos/farmacología , Calcio/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Ácido Quínico/farmacología , Actinidia/química , Animales , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Células Cultivadas , Café/química , Relación Dosis-Respuesta a Droga , Hippophae/química , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Prunus/química , Ácido Quínico/química , Ácido Quínico/aislamiento & purificación , Ratas , Relación Estructura-Actividad , Vaccinium macrocarpon/química , Vaccinium myrtillus/química
8.
Cell Stem Cell ; 24(3): 405-418.e7, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849366

RESUMEN

It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD+-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80%, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation. In immune-deficient mice, NR increased the production of human leucocytes from hCD34+ progenitors. Our work demonstrates for the first time a positive effect of NAD+-boosting strategies on the most primitive blood stem cells, establishing a link between HSC mitochondrial stress, mitophagy, and stem-cell fate decision, and unveiling the potential of NR to improve recovery of patients suffering from hematological failure including post chemo- and radiotherapy.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/citología , Mitocondrias/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Animales , Células Cultivadas , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Niacinamida/metabolismo , Compuestos de Piridinio
9.
Neuropharmacology ; 138: 245-256, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29908242

RESUMEN

Medium-chain triglycerides (MCT) are emerging as unique dietary supplements that are potentially relevant for the amelioration of brain dysfunctions. MCT are converted into ketones and free medium chain fatty acids that, in the brain, are highly effective energy sources to mitochondria and potentially less harmful than glucose metabolism to neurons. Given the recently established link between mitochondrial dysfunction and high anxiety and depression, we performed this study to investigate the effectiveness of an MCT-enriched diet to ameliorate anxiety- and depression-related behaviors in rats. Male rats were distributed into groups, according to their anxiety-like behaviors in the elevated plus maze. Each group was given either MCT-supplemented diet or an isocaloric control diet for fifteen days. Starting from the eighth day of diet, rats were exposed to different behavioral tests. MCT-fed rats exhibited reduced anxiety-like behaviors and enhanced social competitiveness, while their coping responses in the forced swim test were not affected by the treatment. When evaluated at the end of the two-week MCT diet, mitochondrial respiration was reduced in the medial prefrontal cortex (mPFC) while unchanged in the nucleus accumbens. In the mPFC, enzymes related to glycolysis and oxidative phosphorylation were also decreased by MCT diet, while proteins controlling glucose and glutamate transport were increased. Altogether, our findings strongly suggest the effectiveness of MCT diet to exert anxiolytic effects. In the brain, our results point to the mPFC as a brain region in which MCT supplementation improves transport and control of energy substrates.


Asunto(s)
Ansiedad/dietoterapia , Conducta Competitiva , Dieta , Suplementos Dietéticos , Triglicéridos/administración & dosificación , Animales , Ansiedad/metabolismo , Encéfalo/metabolismo , Conducta Competitiva/fisiología , Dominación-Subordinación , Ácido Glutámico/metabolismo , Masculino , Mitocondrias/metabolismo , Ratas Wistar , Método Simple Ciego
10.
Mol Metab ; 6(8): 819-832, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28752046

RESUMEN

OBJECTIVE: Augmenting nicotinamide adenine dinucleotide (NAD+) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD+. Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD+ from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. METHODS: We exploited expression profiling of muscle NAD+ biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD+ recycling to evaluate NMN and NR utilization. RESULTS: Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD+. NAMPT inhibition depletes muscle NAD+ availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD+ in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD+ metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD+. Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD+ availability. CONCLUSIONS: These results identify skeletal muscle cells as requiring NAMPT to maintain NAD+ availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD+ availability.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Niacinamida/análogos & derivados , Mononucleótido de Nicotinamida/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Línea Celular , Células Cultivadas , Citocinas/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Compuestos de Piridinio
11.
Sci Transl Med ; 8(361): 361ra139, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27798264

RESUMEN

Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD+) synthesis, consistent with a potential role for the essential cofactor NAD+ in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene's muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5'-diphosphate (ADP)-ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD+ and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD+ levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ biosynthesis. Replenishing NAD+ stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr-/- mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD+ repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD+ may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures.


Asunto(s)
Músculo Esquelético/fisiopatología , Distrofias Musculares/patología , NAD/química , Poli ADP Ribosilación , Adenosina Difosfato/química , Animales , Caenorhabditis elegans , Línea Celular , Citocinas/química , Fibrosis/patología , Perfilación de la Expresión Génica , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Musculares/patología , Nicotinamida Fosforribosiltransferasa/química , Nitrosaminas/química , ARN Mensajero/metabolismo , Tiramina/análogos & derivados , Tiramina/química
12.
Nat Commun ; 7: 13103, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725675

RESUMEN

NAD+ is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD+ synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD+ synthesis from other NAD+ precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD+. Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD+ synthesis, explaining the overlapping metabolic effects observed with the two compounds.


Asunto(s)
Mamíferos/metabolismo , Niacinamida/análogos & derivados , Mononucleótido de Nicotinamida/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Inyecciones Intraperitoneales , Ratones Noqueados , NAD/biosíntesis , Niacinamida/metabolismo , Compuestos de Piridinio
13.
Cell Metab ; 15(6): 838-47, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22682224

RESUMEN

As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , NAD/metabolismo , Niacinamida/análogos & derivados , Obesidad/prevención & control , Acetilación , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Animales , Encéfalo/metabolismo , Suplementos Dietéticos , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Células HEK293 , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , NAD/sangre , Niacinamida/administración & dosificación , Niacinamida/farmacología , Obesidad/etiología , Especificidad de Órganos , Oxidación-Reducción , Consumo de Oxígeno , Procesamiento Proteico-Postraduccional , Compuestos de Piridinio , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA