Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
ACS Cent Sci ; 6(2): 213-225, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32123739

RESUMEN

Subtype selectivity and functional bias are vital in current drug discovery for G protein-coupled receptors (GPCRs) as selective and biased ligands are expected to yield drug leads with optimal on-target benefits and minimal side-effects. However, structure-based design and medicinal chemistry exploration remain challenging in part because of highly conserved binding pockets within subfamilies. Herein, we present an affinity mass spectrometry approach for screening herbal extracts to identify active ligands of a GPCR, the 5-HT2C receptor. Using this method, we discovered a naturally occurring aporphine 1857 that displayed strong selectivity for activating 5-HT2C without activating the 5-HT2A or 5-HT2B receptors. Remarkably, this novel ligand exhibited exclusive bias toward G protein signaling for which key residues were identified, and it showed comparable in vivo efficacy for food intake suppression and weight loss as the antiobesity drug, lorcaserin. Our study establishes an efficient approach to discovering novel GPCR ligands by exploring the largely untapped chemical space of natural products.

3.
Analyst ; 144(9): 2881-2890, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30788466

RESUMEN

Although natural herbs have been a rich source of compounds for drug discovery, identification of bioactive components from natural herbs suffers from low efficiency and prohibitive cost of the conventional bioassay-based screening platforms. Here we develop a new strategy that integrates virtual screening, affinity mass spectrometry (MS) and targeted metabolomics for efficient discovery of herb-derived ligands towards a specific protein target site. Herb-based virtual screening conveniently selects herbs of potential bioactivity whereas affinity MS combined with targeted metabolomics readily screens candidate compounds in a high-throughput manner. This new integrated approach was benchmarked on screening chemical ligands that target the hydrophobic pocket of the nucleoprotein (NP) of Ebola viruses for which no small molecule ligands have been reported. Seven compounds identified by this approach from the crude extracts of three natural herbs were all validated to bind to the NP target in pure ligand binding assays. Among them, three compounds isolated from Piper nigrum (HJ-1, HJ-4 and HJ-6) strongly promoted the formation of large NP oligomers and reduced the protein thermal stability. In addition, cooperative binding between these chemical ligands and an endogenous peptide ligand was observed, and molecular docking was employed to propose a possible mechanism. Taken together, we established a platform integrating in silico and experimental screening approaches for efficient discovery of herb-derived bioactive ligands especially towards non-enzyme protein targets.


Asunto(s)
Productos Biológicos/metabolismo , Espectrometría de Masas/métodos , Metabolómica/métodos , Nucleoproteínas/metabolismo , Extractos Vegetales/metabolismo , Proteínas del Núcleo Viral/metabolismo , Sitios de Unión , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Descubrimiento de Drogas/métodos , Ebolavirus/química , Ligandos , Simulación del Acoplamiento Molecular , Proteínas de la Nucleocápside , Nucleoproteínas/química , Ophiopogon/química , Piper nigrum/química , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Unión Proteica , Salvia miltiorrhiza/química , Semillas/química , Proteínas del Núcleo Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA