Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Nat Med ; 78(3): 618-632, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38668832

RESUMEN

Acute myeloid leukemia (AML) is a malignant disease that is difficult to completely cure. Polyphyllin I (PPI), a steroidal saponin isolated from Paris polyphylla, has exhibited multiple biological activities. Here, we discovered the superior cytotoxicity of PPI on AML cells MOLM-13 with an IC50 values of 0.44 ± 0.09 µM. Mechanically, PPI could cause ferroptosis via the accumulation of intracellular iron concentration and triggering lipid peroxidation. Interestingly, PPI could induced stronger ferroptosis in a short time of about 6 h compared to erastin. Furthermore, we demonstrate that PPI-induced rapid ferroptosis is due to the simultaneous targeting PI3K/SREBP-1/SCD1 axis and triggering lipid peroxidation, and PI3K inhibitor Alpelisib can enhance the activity of erastin-induced ferroptosis. Molecular docking simulations and kinase inhibition assays demonstrated that PPI is a PI3K inhibitor. In addition, PPI significantly inhibited tumor progression and prolonged mouse survival at 4 mg/kg with well tolerance. In summary, our study highlights the therapeutic potential of PPI for AML and shows its unique dual mechanism.


Asunto(s)
Diosgenina , Ferroptosis , Leucemia Mieloide Aguda , Peroxidación de Lípido , Fosfatidilinositol 3-Quinasas , Ferroptosis/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Animales , Humanos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Diosgenina/farmacología , Diosgenina/análogos & derivados , Diosgenina/uso terapéutico , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Saponinas/farmacología , Saponinas/química
2.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38543129

RESUMEN

(1) Background: Polygonatum cyrtonema is a medicinal plant, and its polysaccharides are used for immunomodulation and the treatment of hyperglycemia. Investigation of the tissue distribution and pharmacokinetics of P. cyrtonema polysaccharide can further elucidate its pharmacological mechanisms. (2) Methods: A fluorescence-labeling approach using rhodamine B (RhB) as a fluorescent molecular probe was used for the quantitative assessment of the polysaccharide from dried P. cyrtonema (DPC1) samples, and the pharmacokinetics and tissue distribution of DPC1 were evaluated in mice after intraperitoneal or oral administration. (3) Results: DPC1 was successfully labeled with RhB, showing degrees of fluorescence labeling at 0.453% and 0.568% as determined by the ultraviolet and enzyme marker methods, respectively. DPC1-RhB was rapidly absorbed into the bloodstream after oral and intraperitoneal administration. Pharmacokinetic characteristics showed that oral administration and intraperitoneal administration were consistent with the features of a two-compartment model. (4) Conclusion: After administration, DPC1-RhB was primarily distributed in the tissues of the heart, spleen, and lung, indicating that the drug has a targeted effect on these tissues. Overall, the findings provide a comprehensive reference for the in vivo distribution of DPC1, together with a foundation for further elucidation of its pharmacological mechanisms and the development and application of DPC1 formulations.

3.
Phytother Res ; 38(4): 1815-1829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349045

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.


Asunto(s)
Chalconas , Sirtuina 2 , Neoplasias de la Mama Triple Negativas , Humanos , Sirtuina 2/farmacología , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Tubulina (Proteína)/farmacología , Tubulina (Proteína)/uso terapéutico , Proliferación Celular , Apoptosis
4.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982538

RESUMEN

Salvia miltiorrhiza Bunge (Danshen) has been widely used to treat cancer and cardiovascular diseases in Chinese traditional medicine. Here, we found that Neoprzewaquinone A (NEO), an active component of S. miltiorrhiza, selectively inhibits PIM1. We showed that NEO potently inhibits PIM1 kinase at nanomolar concentrations and significantly suppresses the growth, migration, and Epithelial-Mesenchymal Transition (EMT) in the triple-negative breast cancer cell line, MDA-MB-231 in vitro. Molecular docking simulations revealed that NEO enters the PIM1 pocket, thereby triggering multiple interaction effects. Western blot analysis revealed that both NEO and SGI-1776 (a specific PIM1 inhibitor), inhibited ROCK2/STAT3 signaling in MDA-MB-231 cells, indicating that PIM1 kinase modulates cell migration and EMT via ROCK2 signaling. Recent studies indicated that ROCK2 plays a key role in smooth muscle contraction, and that ROCK2 inhibitors effectively control the symptoms of high intraocular pressure (IOP) in glaucoma patients. Here, we showed that NEO and SGI-1776 significantly reduce IOP in normal rabbits and relax pre-restrained thoracic aortic rings in rats. Taken together, our findings indicated that NEO inhibits TNBC cell migration and relaxes smooth muscles mainly by targeting PIM1 and inhibiting ROCK2/STAT3 signaling, and that PIM1 may be an effective target for IOP and other circulatory diseases.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias de la Mama Triple Negativas , Humanos , Ratas , Animales , Conejos , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Relajación Muscular , Transición Epitelial-Mesenquimal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Movimiento Celular , Proliferación Celular , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Factor de Transcripción STAT3/metabolismo , Quinasas Asociadas a rho/metabolismo
5.
Phytomedicine ; 93: 153802, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34710755

RESUMEN

BACKGROUND: Myricetin (MYR) is a polyhydroxy flavone originally isolated from Myrica rubra, and is widely distributed in a variety of medicinal plants and delicious food. MYR has been proven to have inhibitory effects against various types of cancer. However, the exact role of MYR in lymphoma development is still unclear. METHODS: In vitro, the MTT assay was performed to evaluate the activity of human diffuse large B lymphoma cell TMD-8 and other tumor cells. Homogeneous time-resolved fluorescence (HTRF) and molecular docking were used to detect the target of MYR inhibiting TMD-8 cells. In addition, flow cytometry, Annexin V-FITC/PI assays, Hoechst 33258, and mondansylcadaverine (MDC) fluorescent standing were used to detect the cell cycle, apoptosis, and autophagy, respectively. Moreover, Western blot analysis was conducted to analyze related signaling pathways. In TMD-8 cell xenotransplanted mice, immunohistochemistry, histopathology, and blood biochemical tests were used to evaluate the effectiveness and safety of oral administration of MYR. RESULTS: Here, we found that MYR is more sensitive to TMD-8 cells than other tumor cells by targeting bruton tyrosine kinase (BTK). BTK is an attractive target for the treatment of B-cell malignancies. The HTRF assay showed that MYR inhibited BTK kinase with an IC50 of 1.82 µM. Furthermore, the HTRF assay and Western blot analysis demonstrated that MYR could bind to key residues (Ala478, Leu408, Thr474) in the BTK active pocket, inhibit the autophosphorylation on tyrosine 223, and block BTK/ERK and BTK/AKT signal transduction cascades (including downstream substrates GSK-3ß, IKK, STAT3, and NF-κb). The results of cell cycle, apoptosis, and autophagy showed that MYR could induce G1/G0 cycle arrest by regulating cyclinB1/D1 expression, induce apoptosis by increasing the Bax/Bcl-2 ratio, and trigger autophagy by inhibiting mTOR activation. In vivo, oral administration of MYR significantly inhibited the growth of TMD-8 xenograft tumora without toxic side effects. Furthermore, Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis showed that MYR could inhibit proliferation and induce apoptosis of tissue lymphoma cells. CONCLUSION: Taken together, MYR is an oral available natural BTK inhibitor that effectively inhibits the growth of lymphoma TMD-8 cells both in vitro and in vivo. In addition, our findings support that the use of MYR is a novel and promising therapeutic strategy for the treatment of lymphoma.


Asunto(s)
Apoptosis , Linfoma , Administración Oral , Agammaglobulinemia Tirosina Quinasa , Animales , Línea Celular Tumoral , Proliferación Celular , Flavonoides , Glucógeno Sintasa Quinasa 3 beta , Linfoma/tratamiento farmacológico , Ratones , Simulación del Acoplamiento Molecular
7.
Biomed Pharmacother ; 131: 110755, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33152920

RESUMEN

Cantharidin (CTD) is the main bioactive component of Cantharides, which is called Banmao in Traditional Chinese Medicine (TCM). Norcantharidin (NCTD) is a structural modifier of CTD. To compare with CTD, NCTD has lighter side effects and stronger bioactivity in anti-cancer through inhibiting cell proliferation, causing apoptosis and autophagy, overwhelming migration and metastasis, affecting immunity as well as lymphangiogenesis. Examples of these effects include suppressing Protein Phosphatase 2A and modulating Wnt/beta catenin signal, with Caspase family proteins, AMPK pathway and c-Met/EGFR pathway involving respectively. Moreover, NCTD has the effects of immune enhancement, anti-platelet aggregation and inhibition of renal interstitial fibrosis with distinct signaling pathways. The immunological effects induced by NCTD are related to the regulation of macrophage polarization and LPS-mediated immune response. The antiplatelet activity that NCTD induced is relevant to the inhibition of platelet signaling and the downregulation of α2 integrin. Furthermore, some of novel derivatives designed and synthesized artificially show stronger biological activities (e.g., anticancer effect, enzyme inhibition effect, antioxidant effect) and lower toxicity than NCTD itself. Plenty of literatures have reported various pharmacological effects of NCTD, particularly the anticancer effect, which has been widely concerned in clinical application and laboratory research. In this review, the pharmaceutical activities and derivatives of NCTD are discussed, which can be reference for further study.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Neoplasias/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cantaridina/química , Proliferación Celular/efectos de los fármacos , Humanos , Medicina Tradicional China , Neoplasias/patología
8.
Front Pharmacol ; 11: 571535, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013413

RESUMEN

Psoralen is the principal bioactive component in the dried fruits of Cullen corylifolium (L.) Medik (syn. Psoralea corylifolia L), termed "Buguzhi" in traditional Chinese medicine (TCM). Recent studies have demonstrated that psoralen displays multiple bioactive properties, beneficial for the treatment of osteoporosis, tumors, viruses, bacteria, and inflammation. The present review focuses on the research evidence relating to the properties of psoralen gathered over recent years. Firstly, multiple studies have demonstrated that psoralen exerts strong anti-osteoporotic effects via regulation of osteoblast/osteoclast/chondrocyte differentiation or activation due to the participation in multiple molecular mechanisms of the wnt/ß-catenin, bone morphogenetic protein (BMP), inositol-requiring enzyme 1 (IRE1)/apoptosis signaling kinase 1 (ASK1)/c-jun N-terminal kinase (JNK) and the Protein Kinase B(AKT)/activator protein-1 (AP-1) axis, and the expression of miR-488, peroxisome proliferators-activated receptor-gamma (PPARγ), and matrix metalloproteinases (MMPs). In addition, the antitumor properties of psoralen are associated with the induction of ER stress-related cell death via enhancement of PERK: Pancreatic Endoplasmic Reticulum Kinase (PERK)/activating transcription factor (ATF), 78kD glucose-regulated protein (GRP78)/C/EBP homologous protein (CHOP), and 94kD glucose-regulated protein (GRP94)/CHOP signaling, and inhibition of P-glycoprotein (P-gp) or ATPase that overcomes multidrug resistance. Furthermore, multiple articles have shown that the antibacterial, anti-inflammatory and neuroprotective effects of psoralen are a result of its interaction with viral polymerase (Pol), destroying the formation of biofilm, and regulating the activation of tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-ß), interleukin 4/5/6/8/12/13 (IL-4/5/6/8/12/13), GATA-3, acetylcholinesterase (AChE), and the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the toxic effects and mechanisms of action of psoralen have also been reviewed.

9.
Phytother Res ; 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33090621

RESUMEN

Cordycepin is the major bioactive component extracted from Cordyceps militaris. In recent years, cordycepin has received increasing attention owing to its multiple pharmacological activities. This study reviews recent researches on the anti-inflammatory effects and the related activities of cordycepin. The results from our review indicate that cordycepin exerts protective effects against inflammatory injury for many diseases including acute lung injury (ALI), asthma, rheumatoid arthritis, Parkinson's disease (PD), hepatitis, atherosclerosis, and atopic dermatitis. Cordycepin regulates the NF-κB, RIP2/Caspase-1, Akt/GSK-3ß/p70S6K, TGF-ß/Smads, and Nrf2/HO-1 signaling pathways among others. Several studies focusing on cordycepin derivatives were reviewed and found to down metabolic velocity of cordycepin and increase its bioavailability. Moreover, cordycepin enhanced immunity, inhibited the proliferation of viral RNA, and suppressed cytokine storms, thereby suggesting its potential to treat COVID-19 and other viral infections. From the collected and reviewed information, this article provides the theoretical basis for the clinical applications of cordycepin and discusses the path for future studies focusing on expanding the medicinal use of cordycepin. Taken together, cordycepin and its analogs show great potential as the next new class of anti-inflammatory agents.

10.
Pharmacol Res ; 155: 104755, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32173585

RESUMEN

Stachydrine is extracted from the leaves of Leonurus japonicus Houtt (or Motherwort, "Yi Mu Cao" in Traditional Chinese Medicine) and is the major bioactive ingredient. So far, stachydrine has demonstrated various bioactivities for the treatment of fibrosis, cardiovascular diseases, cancers, uterine diseases, brain injuries, and inflammation. The pharmacological and pharmacokinetic properties of stachydrine up to 2019 have been comprehensively searched and summarized. This review provides an updated summary of recent studies on the pharmacological activities of stachydrine. Many studies have demonstrated that stachydrine has strong anti-fibrotic properties (on various types of fibrosis) by inhibiting ECM deposition and decreasing inflammatory and oxidative stress through multiple molecular mechanisms (including TGF-ß, ERS-mediated apoptosis, MMPs/TIMPs, NF-κB, and JAK/STAT). The cardioprotective and vasoprotective activities of stachydrine are related to its inhibition of ß-MHC, excessive autophagy, SIRT1, eNOS uncoupling and TF, promotion of SERCA, and angiogenesis. In addition to its anticancer action, regulation of the uterus, neuroprotective effects, etc. the pharmacokinetic properties of stachydrine are also discussed.


Asunto(s)
Prolina/análogos & derivados , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antiinflamatorios/toxicidad , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Cardiotónicos/farmacocinética , Cardiotónicos/farmacología , Cardiotónicos/toxicidad , Femenino , Fibrosis , Humanos , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/toxicidad , Prolina/farmacocinética , Prolina/farmacología , Prolina/toxicidad , Útero/efectos de los fármacos
11.
Fitoterapia ; 141: 104484, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31954180

RESUMEN

The Src-homology 2 domain-containing phosphatase 2 (SHP2), encoded by PTPN11, has been reported oncogenic tyrosine phosphatase associated with various tumors and played critical roles in many cell signaling events. Targeting SHP2 by small molecules may be a promising way for cancer therapy. Herein, a new abietane diterpenoid, named 3-acetoxylteuvincenone G (3-AG), was isolated from the whole plants of Ajuga ovalifolia var. calantha. The structure of the new compound was elucidated by means of extensive spectroscopic analyses. Using recombinant enzyme activity assay and cellular thermal shift assay, we found that 3-AG was a selective inhibitor of SHP2. Molecular docking suggested 3-AG displayed an orientation favorable to nucleophilic attack in the catalytic domain of SHP2. 3-AG suppressed A549 cell proliferation (IC50 = 10.79 ± 0.14 µM), invasion and induced cell apoptosis through SHP2/ERK1/2 and SHP2/AKT pathways. In summary, 3-AG, a potent, selective, and efficacious SHP2 inhibitor, may be a promising small molecule to treat human lung epithelial cancer.


Asunto(s)
Abietanos/farmacología , Apoptosis/efectos de los fármacos , Diterpenos/química , Diterpenos/farmacología , Lamiaceae/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Células A549 , Abietanos/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
12.
Pharmacol Res ; 149: 104463, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31553936

RESUMEN

Shikonin is the major bioactive component extracted from the roots of Lithospermum erythrorhizon which is also known as "Zicao" in Traditional Chinese Medicine (TCM). Recent studies have shown that shikonin demonstrates various bioactivities related to the treatment of cancer, inflammation, and wound healing. This review aimed to provide an updated summary of recent studies on shikonin. Firstly, many studies have demonstrated that shikonin exerts strong anticancer effects on various types of cancer by inhibiting cell proliferation and migration, inducing apoptosis, autophagy, and necroptosis. Shikonin also triggers Reactive Oxygen Species (ROS) generation, suppressing exosome release, and activate anti-tumor immunity in multiple molecular mechanisms. Examples of these effects include modulating the PI3K/AKT/mTOR and MAPKs signaling; inhibiting the activation of TrxR1, PKM2, RIP1/3, Src, and FAK; and regulating the expression of ERP57, MMPs, ATF2, C-MYC, miR-128, and GRP78 (Bip). Next, the anti-inflammatory and wound-healing properties of shikonin were also reviewed. Furthermore, several studies focusing on shikonin derivatives were reviewed, and these showed that, with modification to the naphthazarin ring or side chain, some shikonin derivatives display stronger anticancer activity and lower toxicity than shikonin itself. Our findings suggest that shikonin and its derivatives could serve as potential novel drug for the treatment of cancer and inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Naftoquinonas/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Chaperón BiP del Retículo Endoplásmico , Humanos , Lithospermum/química , Naftoquinonas/química , Naftoquinonas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Cicatrización de Heridas/efectos de los fármacos
13.
Biomed Pharmacother ; 117: 109189, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31387191

RESUMEN

Paris polyphylla. is a traditional medicinal herb that has long been used to prevent cancer in many Asian countries. Polyphyllin I (PPI), an important bioactive constituent of Paris polyphylla, has been found to exhibit a wide variety of anticancer activities in many types of cancer cells. However, the effects of PPI on human gastric carcinoma cells and its mechanism of action remain unclear. In this study, we examined the effective anti-gastric carcinoma activity of PPI and its underlying mechanism of action in HGC-27 cells. In vitro, sub-micromolar concentrations of PPI inhibited HGC-27 cell proliferation with an IC50 of 0.34 ± 0.06 µM after a 72-h treatment. In vivo, 3 mg/kg PPI significantly inhibited proliferation of HGC-27 tumor cells, with a 78.8% inhibition rate compared to paclitaxel, and demonstrated higher safety. Analysis of MDC and mGFP-LC3 fluorescence, Western blotting and flow cytometry indicated that PPI induced cell cycle arrest in HGC-27 cells by promoting the conversion of LC3-I to LC3-II and by downregulating cyclin B1. Furthermore, Western blotting showed that PPI inhibited the autophagy-regulating PDK1/Akt/mTOR signaling pathway in vitro and in vivo. In addition, immunohistochemistry and TUNEL staining revealed that PPI decreased Ki67 expression and increased the percentage of apoptotic cells in HGC-27 xenograft tumors. These data indicate that PPI is an PDK1/Akt/mTOR signaling inhibitor and of therapeutic relevance for gastric cancer treatment and that the rhizome of Paris polyphylla deserves further clinical investigation as an alternative therapy for gastric cancer.


Asunto(s)
Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diosgenina/análogos & derivados , Regulación hacia Abajo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Línea Celular Tumoral , Ciclina B1/metabolismo , Diosgenina/farmacología , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
14.
Mol Pharmacol ; 96(5): 589-599, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31462456

RESUMEN

Licorice is a medicinal herb widely used to treat inflammation-related diseases in China. Isoliquiritigenin (ISL) is an important constituent of licorice and possesses multiple bioactivities. In this study, we examined the selective anti-AML (acute myeloid leukemia) property of ISL via targeting FMS-like tyrosine kinase-3 (FLT3), a certified valid target for treating AML. In vitro, ISL potently inhibited FLT3 kinase, with an IC50 value of 115.1 ± 4.2 nM, and selectively inhibited the proliferation of FLT3-internal tandem duplication (FLT3-ITD) or FLT3-ITD/F691L mutant AML cells. Moreover, it showed very weak activity toward other tested cell lines or kinases. Western blot immunoassay revealed that ISL significantly inhibited the activation of FLT3/Erk1/2/signal transducer and activator of transcription 5 (STAT5) signal in AML cells. Meanwhile, a molecular docking study indicated that ISL could stably form aromatic interactions and hydrogen bonds within the kinase domain of FLT3. In vivo, oral administration of ISL significantly inhibited the MV4-11 flank tumor growth and prolonged survival in the bone marrow transplant model via decreasing the expression of Ki67 and inducing apoptosis. Taken together, the present study identified a novel function of ISL as a selective FLT3 inhibitor. ISL could also be a potential natural bioactive compound for treating AML with FLT3-ITD or FLT3-ITD/F691L mutations. Thus, ISL and licorice might possess potential therapeutic effects for treating AML, providing a new strategy for anti-AML.


Asunto(s)
Chalconas/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Glycyrrhiza , Leucemia Mieloide Aguda/tratamiento farmacológico , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Administración Oral , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Simulación del Acoplamiento Molecular/métodos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Tirosina Quinasa 3 Similar a fms/metabolismo
15.
Molecules ; 24(16)2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31405117

RESUMEN

Two new terpene glycosides (1-2) along with two known analogs (3-4) were obtained from the root of Sanguisorba officinalis, which is a common traditional Chinese medicine (TCM). Their structures were elucidated by nuclear magnetic resonance (NMR), electrospray ionization high resolution mass spectrometry (HRESIMS), and a hydrolysis reaction, as well as comparison of these data with the literature data. Compounds 1-4 exhibited anti-inflammatory properties in vitro by attenuating the production of inflammatory mediators, such as nitric oxide (NO) as well as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). An anti-inflammatory assay based on the zebrafish experimental platform indicated that compound 1 had good anti-inflammatory activity in vivo by not only regulating the distribution, but also by reducing the amount of the macrophages of the zebrafish exposed to copper sulfate.


Asunto(s)
Antiinflamatorios , Glicósidos , Sanguisorba/química , Terpenos , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Glicósidos/química , Glicósidos/aislamiento & purificación , Glicósidos/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Ratones , Óxido Nítrico/metabolismo , Células RAW 264.7 , Terpenos/química , Terpenos/aislamiento & purificación , Terpenos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra
16.
Artículo en Inglés | MEDLINE | ID: mdl-31118959

RESUMEN

Geniposide is a well-known iridoid glycoside compound and is an essential component of a wide variety of traditional phytomedicines, for example, Gardenia jasminoides Elli (Zhizi in Chinese), Eucommia ulmoides Oliv. (Duzhong in Chinese), Rehmannia glutinosa Libosch. (Dihuang in Chinese), and Achyranthes bidentata Bl. (Niuxi in Chinese). It is also the main bioactive component of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides Ellis. Increasing pharmacological evidence supports multiple medicinal properties of geniposide including neuroprotective, antidiabetic, hepatoprotective, anti-inflammatory, analgesic, antidepressant-like, cardioprotective, antioxidant, immune-regulatory, antithrombotic, and antitumoral effects. It has been proposed that geniposide may be a drug or lead compound for the prophylaxis and treatment of several diseases, such as Alzheimer's disease, Parkinson's disease, diabetes and diabetic complications, ischemia and reperfusion injury, and hepatic disorders. The aim of the present review is to give a comprehensive summary and analysis of the pharmacological properties of geniposide, supporting its use as a medicinal agent.

17.
Bioorg Chem ; 87: 136-141, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30884307

RESUMEN

Chlorovaltrates U-W (1-3), three previously undescribed iridoids, together with four known analogues were isolated from the roots of Valeriana jatamansi. Their structures were elucidated by means of spectroscopic analyses (HRESIMS, NMR). The cytotoxicity of all isolates was evaluated. Compounds 5-7 exhibited selective cytotoxicity against HCT116 cells, with IC50 values of 9.3, 1.7 and 2.2 µM, respectively. The preliminary mechanistic study revealed that, the cytotoxicity effect of 6 was attributed to Akt/mTOR activation blockade via inhibition of PDK1 phosphorylation. Meanwhile, compound 6 could induce autophagosome formation in HCT116 cells via suppressing its downstream Akt/mTOR. These findings show that compound 6 could be of great importance to the development of anti-colon cancer agents.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Autofagia/efectos de los fármacos , Iridoides/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Valeriana/química , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Iridoides/química , Iridoides/aislamiento & purificación , Modelos Moleculares , Estructura Molecular , Raíces de Plantas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
18.
J Asian Nat Prod Res ; 21(10): 999-1004, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29945462

RESUMEN

Three aryl-tetralin-type lignans, including 2 previously undescribed compounds, were isolated from the root of Sanguisorba officinalis. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analyses and mass spectrometry. Experimental and calculated ECD were used to determine the absolute configurations. The isolated compounds were evaluated for cytotoxicity against two cell lines (MV4-11 and MDA-MB-231) and compound 1 exhibited moderate growth inhibition against MDA-MB-231 cell line with IC50 value of 15.76 µM.


Asunto(s)
Lignanos/farmacología , Sanguisorba/química , Antineoplásicos Fitogénicos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lignanos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química
19.
J Nat Prod ; 81(9): 1992-2003, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30212198

RESUMEN

Twenty-two new sesquiterpenoids with four skeletal types and 15 known analogues were isolated from the whole plants of Ligularia rumicifolia. The structures of the isolates were elucidated based on comprehensive spectroscopic data analysis. Compound 1 is a C14 nor-sesquiterpenoid featuring a 6/6/6 tricyclic skeleton with a 9,13-ether bridge. The absolute configuration of 2 was established through single-crystal X-ray diffraction data. Compounds 13-16 exhibited in vitro antiproliferative activity against the four human tumor cell lines A-549, HGC-27, HeLa, and MV4-11. Specifically, compounds 13 and 16 showed antiproliferative activity against the MV4-11 cell line with IC50 values of 0.5 ± 0.2 and 1.1 ± 0.5 µM, respectively.


Asunto(s)
Asteraceae/química , Sesquiterpenos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Extractos Vegetales/farmacología , Sesquiterpenos/química , Sesquiterpenos/farmacología , Difracción de Rayos X
20.
Oncotarget ; 8(61): 103087-103099, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262547

RESUMEN

Targeted therapies for the treatment of acute myeloid leukemia (AML), specifically the FLT3 inhibitors, have shown promising results. Nevertheless, it is very unlikely that inhibitors which target a single pathway will provide long-term disease control. Here, we report the characterization of crotonoside, a natural product extracted from Chinese medicinal herb, Croton, for the treatment of AML via inhibition of FLT3 and HDAC3/6. In vitro, crotonoside exhibited selective inhibition in AML cells. In vivo, crotonoside treatment at 70 and 35 mg/kg/d produced significant AML tumor inhibition rates of 93.5% and 73.6%, respectively. Studies on the anti-AML mechanism of crotonoside demonstrated a significant inhibition of FLT3 signaling, cell cycle arrest in G0/G1 phase, and apoptosis. In contrast to classic FLT3 inhibitor; sunitinib, crotonoside was able to selectively suppress the expression of HDAC3 and HDAC6 without altering the expression of other HDAC isoforms. Inhibitors of HDAC3 and HDAC6; RGFP966 and HPOB, respectively, also exhibited selective inhibition in AML cells. Furthermore, we established novel signaling pathways including HDAC3/NF-κB-p65 and HDAC6/c-Myc besides FLT3/c-Myc which are aberrantly regulated in the progression of AML. In addition, crotonoside alone or the combination of sunitinib/RFP966/HPOB exhibited a significant post-inhibition effect in AML cells by the inhibition of FLT3 and HDAC3/6. Inhibitors targeting the FLT3 and HDAC3/6 might provide a more effective treatment strategy for AML. Taken together, the present study suggests that crotonoside could be a promising candidate for the treatment of AML, and deserves further investigations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA