Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353068

RESUMEN

Breast cancer is one of the most frequently diagnosed malignancies and common causes of cancer death in women. Recent studies suggest that environmental exposures to certain chemicals, such as 7,12-Dimethylbenzanthracene (DMBA), a chemical present in tobacco, may increase the risk of developing breast cancer later in life. The first-line treatments for breast cancer (surgery, chemotherapy or a combination of both) are generally invasive and frequently associated with severe side effects and high comorbidity. Consequently, novel approaches are strongly required to find more natural-like experimental models that better reflect the tumors' etiology, physiopathology and response to treatments, as well as to find more targeted, efficient and minimally invasive treatments. This study proposes the development and an in deep biological characterization of an experimental model using DMBA-tumor-induction in Sprague-Dawley female rats. Moreover, a photothermal therapy approach using a near-infrared laser coupled with gold nanoparticles was preliminarily assessed. The gold nanoparticles were functionalized with Epidermal Growth Factor, and their physicochemical properties and in vitro effects were characterized. DMBA proved to be a very good and selective inductor of breast cancer, with 100% incidence and inducing an average of 4.7 tumors per animal. Epigenetic analysis showed that tumors classified with worst prognosis were hypomethylated. The tumor-induced rats were then subjected to a preliminary treatment using functionalized gold nanoparticles and its activation by laser (650-900 nm). The treatment outcomes presented very promising alterations in terms of tumor histology, confirming the presence of necrosis in most of the cases. Although this study revealed encouraging results as a breast cancer therapy, it is important to define tumor eligibility and specific efficiency criteria to further assess its application in breast cancer treatment on other species.


Asunto(s)
5-Metilcitosina/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Hipertermia Inducida , Neoplasias Mamarias Experimentales/terapia , Nanopartículas del Metal/administración & dosificación , Modelos Teóricos , Animales , Peso Corporal , Femenino , Oro/química , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/patología , Nanopartículas del Metal/química , Ratas , Ratas Sprague-Dawley
2.
Anaerobe ; 30: 146-52, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25270831

RESUMEN

Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 µg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 µg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 µg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm activity revealed significant results--MICB50 lay between 7.8 and 62.5 µg/mL, and dehydroabietic acid prevented all the evaluated bacteria from forming a biofilm. Hence, the chemical constituents of P. elliottii are promising biomolecules to develop novel therapeutic strategies to fight against endodontic infections.


Asunto(s)
Abietanos/farmacología , Antibacterianos/farmacología , Bacterias Anaerobias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Pinus/química , Extractos Vegetales/farmacología , Pulpitis/microbiología , Abietanos/aislamiento & purificación , Antibacterianos/aislamiento & purificación , Bacterias Anaerobias/aislamiento & purificación , Bacterias Anaerobias/fisiología , Biopelículas/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/aislamiento & purificación
3.
J Med Microbiol ; 63(Pt 12): 1649-1653, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261060

RESUMEN

Antibiotic-resistant bacteria have emerged from the widespread use of antibiotics worldwide and have prompted the search for new sources of antimicrobial substances. Pinus spp. contain several bioactive compounds consisting mainly of terpenes, terpenoids and some other aromatic and aliphatic constituents. These compounds exert important biological effects, and pine oils have found wide application in the industry. In the present study, we have evaluated the potential activity of the resin-oil of Pinus elliottii and its major compound dehydroabietic acid (DA) against multiresistant bacteria by MIC, minimum bactericidal concentration and time-kill assays. The MIC of the resin-oil of P. elliottii varied between 25 and 100 µg ml(-1). As for DA, the MIC and minimum bactericidal concentration varied between 6.25 and 50 and between 6.25 and 100 µg ml(-1), respectively. The time-kill assay conducted with DA at 6.25 µg ml(-1) evidenced bactericidal activity against Staphylococcus epidermidis (American Type Culture Collection 14990) within 24 h. On the basis of these results, the resin-oil of P. elliottii and its major compound DA play an important part in the search for novel sources of agents that can act against multiresistant bacteria.


Asunto(s)
Abietanos/farmacología , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Pinus/química , Extractos Vegetales/farmacología , Abietanos/aislamiento & purificación , Antibacterianos/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA