Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Chem Biol ; 24(5): 624-634.e3, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28434878

RESUMEN

Today, novel therapeutics are identified in an environment which is intrinsically different from the clinical context in which they are ultimately evaluated. Using molecular phenotyping and an in vitro model of diabetic cardiomyopathy, we show that by quantifying pathway reporter gene expression, molecular phenotyping can cluster compounds based on pathway profiles and dissect associations between pathway activities and disease phenotypes simultaneously. Molecular phenotyping was applicable to compounds with a range of binding specificities and triaged false positives derived from high-content screening assays. The technique identified a class of calcium-signaling modulators that can reverse disease-regulated pathways and phenotypes, which was validated by structurally distinct compounds of relevant classes. Our results advocate for application of molecular phenotyping in early drug discovery, promoting biological relevance as a key selection criterion early in the drug development cascade.


Asunto(s)
Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Fenotipo , Minería de Datos , Evaluación Preclínica de Medicamentos , Humanos
2.
Cell Rep ; 9(3): 810-21, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25437537

RESUMEN

Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.


Asunto(s)
Cardiomiopatías Diabéticas/patología , Evaluación Preclínica de Medicamentos , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Diferenciación Celular/efectos de los fármacos , Humanos , Hipertrofia , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fenotipo , Sarcómeros/efectos de los fármacos , Sarcómeros/patología , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
3.
J Biomol Screen ; 18(10): 1203-11, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24071917

RESUMEN

A major hurdle for cardiovascular disease researchers has been the lack of robust and physiologically relevant cell-based assays for drug discovery. Derivation of cardiomyocytes from human-induced pluripotent stem (iPS) cells at high purity, quality, and quantity enables the development of relevant models of human cardiac disease with source material that meets the demands of high-throughput screening (HTS). Here we demonstrate the utility of iPS cell-derived cardiomyocytes as an in vitro model of cardiac hypertrophy. Exposure of cardiomyocytes to endothelin 1 (ET-1) leads to reactivation of fetal genes, increased cell size, and robust expression of B-type natriuretic peptide (BNP). Using this system, we developed a suite of assays focused on BNP detection, most notably a high-content imaging-based assay designed for phenotypic screening. Miniaturization of this assay to a 384-well format enabled the profiling of a small set of tool compounds known to modulate the hypertrophic response. The assays described here provide consistent and reliable results and have the potential to increase our understanding of the many mechanisms underlying this complex cardiac condition. Moreover, the HTS-compatible workflow allows for the incorporation of human biology into early phases of drug discovery and development.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/efectos de los fármacos , Biomarcadores/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Cardiomegalia/tratamiento farmacológico , Diferenciación Celular , Tamaño de la Célula , Células Cultivadas , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Imidazoles/farmacología , Concentración 50 Inhibidora , Miocitos Cardíacos/metabolismo , Fenotipo , Quinolinas/farmacología , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Verapamilo/farmacología
4.
PLoS One ; 7(8): e43580, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952710

RESUMEN

BACKGROUND: Mutations in the leucine-rich repeat kinase-2 (LRRK2) have been linked to Parkinson's disease. Recent studies show that inhibition of LRRK2 kinase activity decreased the level of phosphorylation at its own Ser910 and Ser935, indicating that these sites are prime targets for cellular readouts of LRRK2 inhibition. METHODOLOGY/PRINCIPAL FINDINGS: Using Time-Resolved Förster Resonance Energy Transfer (TR-FRET) technology, we developed a high-throughput cellular assay for monitoring LRRK2 phosphorylation at Ser935. LRRK2-Green Fluorescence Protein (GFP) fusions were expressed in cells via BacMam. Phosphorylation at Ser935 in these cells is detected using a terbium labeled anti-phospho-Ser935 antibody that generates a TR-FRET signal between terbium and GFP. LRRK2 wild-type and G2019S are constitutively phosphorylated at Ser935 in cells as measured by TR-FRET. The phosphorylation level is reduced for the R1441C mutant and little could be detected for the kinase-dead mutant D1994A. The TR-FRET cellular assay was further validated using reported LRRK2 inhibitors including LRRK2-IN-1 and our results confirmed that inhibition of LRRK2 can reduce the phosphorylation level at Ser935. To demonstrate the utility of this assay for screening, we profiled a small library of 1120 compounds. Three known LRRK2 inhibitors were identified and 16 hits were followed up in the TR-FRET and a cytotoxicity assay. Interestingly, out of the top 16 hits, five are known inhibitors of IκB phosphorylation, two CHK1 and two CDC25 inhibitors. Thirteen hits were further tested in a biochemical LRRK2 kinase activity assay and Western blot analysis for their effects on the phosphorylation of Ser910, Ser935, Ser955 and Ser973. CONCLUSIONS/SIGNIFICANCE: We developed a TR-FRET cellular assay for LRRK2 Ser935 phosphorylation that can be applied to the screening for LRRK2 inhibitors. We report for the first time that several compounds such as IKK16, CHK1 inhibitors and GW441756 can inhibit LRRK2 Ser935 phosphorylation in cells and LRRK2 kinase activity in vitro.


Asunto(s)
Química Farmacéutica/métodos , Evaluación Preclínica de Medicamentos/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Serina/química , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Diseño de Fármacos , Biblioteca de Genes , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación/métodos , Concentración 50 Inhibidora , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Modelos Genéticos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Fosforilación , Proteínas Quinasas/química
5.
Assay Drug Dev Technol ; 7(4): 348-55, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19656081

RESUMEN

The posttranslational modification of target substrates by the ubiquitin-like proteins, specifically the small ubiquitin-like modifier (SUMO), has emerged as an essential mechanism to regulate protein function and control intracellular trafficking. Traditional methods for monitoring either the attachment or removal of SUMO, such as gel electrophoresis or western blot, are effective but typically suffer from a lack of throughput. Here, we report the development and application of time-resolved Förster resonance energy transfer (TR-FRET)-based assays capable of detecting SUMOylation or deSUMOylation in a high-throughput screening (HTS) format. Using Ran GTPase-activating protein (RanGAP1) as a model target substrate, we have demonstrated that the SUMOylation of this protein can be detected using LanthaScreen (Invitrogen, Carlsbad, CA) TR-FRET technology. Additionally, we have generated reagents useful for assessing the deSUMOylation activity of a sentrin-specific protease. All assays are performed in 384-well format and display excellent statistical data (Z' > 0.7) with high signal-to-background levels. Together, this collection of tools can be utilized in a modular approach to develop HTS assays for inhibitors of SUMOylation or deSUMOylation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Enzimas/química , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Proteínas Activadoras de GTPasa/química , Indicadores y Reactivos , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/aislamiento & purificación , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
6.
J Biomol Screen ; 14(2): 121-32, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19196698

RESUMEN

The PI3K/AKT/mTOR pathway is central to cell growth and survival, cell cycle regulation, and programmed cell death. Aberrant activation of this signaling cascade is linked to several disease states, and thus many components of the pathway are attractive targets for therapeutic intervention. However, the considerable degree of complexity, crosstalk, and feedback regulation that exists within the pathway (especially with respect to the regulation of mTOR and its complexes) underscores the need for a comprehensive set of cell-based assays to properly identify and characterize small-molecule modulators. Here, the development and application of time-resolved Förster resonance energy transfer (TR-FRET)-based assays to enable the phosphoprotein analysis of key pathway components in a cellular format are reported. The LanthaScreen cellular assay platform uses FRET between a terbium-labeled phosphorylation site-specific antibody and an expressed green fluorescent protein fusion of particular kinase substrate and provides an assay readout that is ratiometric, robust, and amenable to high-throughput screening applications. Assays specific for 5 different targets within the pathway are highlighted: Ser183 and Thr246 on the proline-rich AKT substrate 40 kDa (PRAS40), Ser457 on programmed cell death protein 4 (PDCD4), and Thr308 and Ser473 on AKT. Each assay was evaluated under various experimental conditions and individually optimized for performance. Known pathway agonists and a small panel of commercially available compounds were also used to complete the assay validation. Taken together, these data demonstrate the utility of a related set of cell-based assays to interrogate PI3K/AKT/mTOR signaling and provide a template for the development of similar assays for other targets.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/análisis , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Células Cultivadas , Humanos , Concentración 50 Inhibidora , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/análisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
7.
Assay Drug Dev Technol ; 6(4): 519-29, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18694336

RESUMEN

The Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 5 pathway is responsible for regulation of cellular responses to a number of cytokines and growth factors. In hematopoietic cells, growth factors such as granulocyte macrophage-colony stimulating factor, interleukin-3, and erythropoietin induce the activation of JAK2, which leads to the phosphorylation, dimerization, and transactivation of STAT5 proteins. Dysregulation of JAK2 by activating mutations such as JAK2V617F results in constitutive phosphorylation of STAT5 and has been linked to numerous myeloproliferative disorders such as polycythemia vera. A cellular LanthaScreen (Invitrogen Corp., Carlsbad, CA) time-resolved Förster resonance energy transfer assay for wild-type JAK2 activity was developed. This assay utilized the growth factor-dependent human erythroleukemia TF1 cell line engineered to express a green fluorescent protein-STAT5 fusion protein. Furthermore, a complementary beta-lactamase reporter gene assay was developed to analyze the transcriptional activity of STAT5 downstream of JAK2 in TF1 cells. The same technologies were applied to the development of cellular assays for the interrogation of the disease-relevant JAK2V617F activating mutant. A small molecule inhibitor and Stealth (Invitrogen Corp.) RNA interference oligonucleotides were used to confirm the involvement of JAK2. Our results suggest that these cellular assays and validation tools represent powerful integrated methods for the analysis of physiological and disease-relevant JAK/STAT pathways within the physiological cellular context.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Genes Reporteros/genética , Janus Quinasa 2/antagonistas & inhibidores , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Proliferación Celular , Células Cultivadas , Evaluación Preclínica de Medicamentos , Transferencia Resonante de Energía de Fluorescencia , Vectores Genéticos , Humanos , Indicadores y Reactivos , Microscopía Fluorescente , ARN Interferente Pequeño/farmacología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA