Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Reproduction ; 165(4): 395-405, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757313

RESUMEN

In brief: Seminal nerve growth factor induces ovulation in camelids by influencing the secretion of gonadotrophin-releasing hormone (GnRH) into the portal vessels of the pituitary gland. We show that the nerve growth factor-induced release of GnRH is not mediated directly through interaction with hypothalamic neurons. Abstract: Ovulation in camelids is triggered by seminal nerve growth factor (NGF). The mechanism of action of NGF appears to occur via the central nervous system. In this study, we tested the hypothesis that NGF acts in the hypothalamus to induce GnRH release. To determine if NGF-induced ovulation is associated with a rise in NGF concentrations in the cerebrospinal fluid (CSF), llamas were i) mated with an urethrostomized male, ii) mated with intact male, or given intrauterine iii) seminal plasma or i.v.) saline (Experiment 1). To characterize the luteinizing hormone (LH) response after central vs peripheral administration, llamas were treated with saline (negative control) or NGF either by i.v. or intracerebroventricular (ICV) administration (Experiment 2). To determine the role of kisspeptin, the effect of ICV infusion of a kisspeptin receptor antagonist on NGF-induced LH secretion and ovulation was tested in llamas (Experiment 3). In Experiment 1, a surge in circulating concentrations of LH was detected only in llamas mated with an intact male and those given intrauterine seminal plasma, but no changes in CSF concentrations of NGF were detected. In Experiment 2, peripheral administration (i.v.) of NGF induced an LH surge and ovulation, whereas no response was detected after central (ICV) administration. In Experiment 3, the kisspeptin receptor antagonist had no effect on the LH response to NGF. In conclusion, results did not support the hypothesis that NGF-induced ovulation is mediated via a trans-synaptic pathway within the hypothalamus, but rather through a releasing effect on tanycytes at the median eminence.


Asunto(s)
Camélidos del Nuevo Mundo , Factor de Crecimiento Nervioso , Femenino , Animales , Masculino , Factor de Crecimiento Nervioso/farmacología , Progesterona , Camélidos del Nuevo Mundo/metabolismo , Kisspeptinas/farmacología , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo
2.
Reproduction ; 162(2): 171-179, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34128825

RESUMEN

To elucidate the mechanism by which nerve growth factor (NGF) influences the LH secretory pathway in camelids, a series of experiments were done to determine the involvement of the hypothalamus (Experiment 1), the role of GnRH neurons (Experiment 2), and the effect of progesterone (Experiment 3) on the NGF-induced LH surge and ovulation in llamas. In Experiment 1, the declining phase of the NGF-induced LH surge was used to determine if the decline is a result of pituitary depletion or hypothalamic unresponsiveness. Female llamas were treated with NGF and, 7 h later, assigned to three groups and given a second dose of NGF (n = 5), a dose of GnRH (n = 5), or saline (n = 6). The LH response was attenuated after the second dose of NGF vs GnRH. In Experiment 2, Fos expression (marker of neuronal activation) in GnRH neurons was examined in the hypothalamus of llamas after NGF or saline treatment (n = 3 per group). Despite an LH surge in the NGF group but not in the saline group, no differences were detected between groups in Fos/GnRH co-expression. In Experiment 3, llamas in low-, medium-, and high-plasma progesterone groups (n = 4 per group) were treated with NGF. The NGF-induced LH surge did not differ among treatment groups. Results from the present study show that the induction of a preovulatory LH surge by NGF may be controlled by a novel pathway involving GnRH neuro-terminals downstream of the hypothalamus and is independent of progesterone influence.


Asunto(s)
Hormona Liberadora de Gonadotropina/farmacología , Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Factor de Crecimiento Nervioso/farmacología , Hipófisis/metabolismo , Progesterona/metabolismo , Animales , Camélidos del Nuevo Mundo , Femenino , Hipotálamo/efectos de los fármacos , Hipófisis/efectos de los fármacos
3.
Biol Reprod ; 104(3): 578-588, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33331645

RESUMEN

The objective of the study was to characterize the anatomical framework and sites of action of the nerve growth factor (NGF)-mediated ovulation-inducing system of llamas. The expression patterns of NGF and its receptors in the hypothalamus of llamas (n = 5) were examined using single and double immunohistochemistry/immunofluorescence. We also compare the expression pattern of the P75 receptor in the hypothalamus of llama and a spontaneous ovulator species (sheep, n = 5). Both NGF receptors (TrkA and P75) were highly expressed in the medial septum and diagonal band of Broca, and populations of TrkA cells were observed in the periventricular and dorsal hypothalamus. Unexpectedly, we found NGF immunoreactive cell bodies with widespread distribution in the hypothalamus but not in areas endowed with NGF receptors. The organum vasculosum of the lamina terminalis (OVLT) and the median eminence displayed immunoreactivity for P75. Double immunofluorescence using vimentin, a marker of tanycytes, confirmed that tanycytes were immunoreactive to P75 in the median eminence and in the OVLT. Additionally, tanycytes were in close association with GnRH and kisspeptin in the arcuate nucleus and median eminence of llamas. The choroid plexus of llamas contained TrkA and NGF immunoreactivity but no P75 immunoreactivity. Results of the present study demonstrate sites of action of NGF in the llama hypothalamus, providing support for the hypothesis of a central effect of NGF in the ovulation-inducing mechanism in llamas.


Asunto(s)
Hipotálamo/fisiología , Factor de Crecimiento Nervioso/metabolismo , Ovulación/fisiología , Receptor de Factor de Crecimiento Nervioso/metabolismo , Animales , Camélidos del Nuevo Mundo , Plexo Coroideo , Femenino , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Inmunohistoquímica , Kisspeptinas/genética , Kisspeptinas/metabolismo , Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/genética , Receptor trkA/genética , Receptor trkA/metabolismo , Ovinos/fisiología , Vimentina/genética , Vimentina/metabolismo
4.
Biol Reprod ; 103(1): 49-59, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32307518

RESUMEN

Kisspeptin has been implicated in the ovulatory process of several species of spontaneous ovulators but in only one induced ovulator. In contrast, NGF in semen is the principal trigger of ovulation in other species of induced ovulators-camelids. We tested the hypotheses that kisspeptin induces luteinizing hormone (LH) secretion in llamas through a hypothalamic mechanism, and kisspeptin neurons are the target of NGF in its ovulation-inducing pathway. In Experiment 1, llamas were given either NGF, kisspeptin, or saline intravenously, and LH secretion and ovulation were compared among groups. All llamas treated with NGF (5/5) or kisspeptin (5/5) had an elevation of LH blood concentrations after treatment and ovulated, whereas none of the saline group did (0/5). In Experiment 2, llamas were either pretreated with a gonadotropin-releasing hormone (GnRH) receptor antagonist or saline and treated 2 h later with kisspeptin. Llamas pretreated with saline had elevated plasma LH concentrations and ovulated (6/6) whereas llamas pretreated with cetrorelix did not (0/6). In Experiment 3, we evaluated the hypothalamic kisspeptin-GnRH neuronal network by immunohistochemistry. Kisspeptin neurons were detected in the arcuate nucleus, the preoptic area, and the anterior hypothalamus, establishing synaptic contacts with GnRH neurons. We found no colocalization between kisspeptin and NGF receptors by double immunofluorescence. Functional and morphological findings support the concept that kisspeptin is a mediator of the LH secretory pathway in llamas; however, the role of kisspeptins in the NGF ovulation-inducing pathway in camelids remains unclear since NGF receptors were not detected in kisspeptin neurons in the hypothalamus.


Asunto(s)
Camélidos del Nuevo Mundo/fisiología , Kisspeptinas/farmacología , Hormona Luteinizante/metabolismo , Inducción de la Ovulación/veterinaria , Ovulación/efectos de los fármacos , Ovulación/fisiología , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/química , Kisspeptinas/análisis , Kisspeptinas/fisiología , Masculino , Factor de Crecimiento Nervioso/aislamiento & purificación , Factor de Crecimiento Nervioso/farmacología , Neuronas/química , Receptores de Factor de Crecimiento Nervioso/análisis , Semen/química
5.
Reprod Biol Endocrinol ; 16(1): 83, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30170607

RESUMEN

BACKGROUND: A molecule identical to nerve growth factor, with ovulation-inducing properties has been discovered in the seminal plasma of South American camelids (ovulation-inducing factor/nerve growth factor; OIF/NGF). We hypothesize that the ovulatory effect of OIF/NGF is initiated at the level of the hypothalamus, presumably by GnRH neurons. The objective of the present study was to determine the structural relationship between GnRH neurons and neurons expressing high- and low-affinity receptors for NGF (i.e., TrkA and p75, respectively) in the hypothalamus. METHODS: Mature llamas (n = 4) were euthanized and their hypothalamic tissue was fixed, sectioned, and processed for immunohistochemistry on free-floating sections. Ten equidistant sections per brain were double stained for immunofluorescence detection of TrkA and GnRH, or p75 and GnRH. RESULTS: Cells immunoreactive to TrkA were detected in most hypothalamic areas, but the majority of cells were detected in the diagonal band of Broca (part of the ventral forebrain) and the supraoptic nuclei and periventricular area. The number of cells immunoreactive to p75 was highest in the diagonal band of Broca and lateral preoptic areas and least in more caudal areas of the hypothalamus (p < 0.05) in a pattern similar to that of TrkA. A low proportion of GnRH neurons were immunoreactive to TrkA (2.5% of total GnRH cells), and no co-localization between GnRH and p75 was detected. GnRH neuron fibers were detected only occasionally in proximity to TrkA immunopositive neurons. CONCLUSIONS: Results do not support the hypothesis that the effect of OIF/NGF is driven by a direct interaction with GnRH neurons, but rather provide rationale for the hypothesis that interneurons exist in the hypothalamus that mediate OIF/NGF-induced ovulation.


Asunto(s)
Camélidos del Nuevo Mundo/fisiología , Hormona Liberadora de Gonadotropina/farmacología , Hipotálamo/efectos de los fármacos , Ovulación/fisiología , Animales , Inmunohistoquímica , Técnicas In Vitro , Ovulación/efectos de los fármacos , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
6.
Gen Comp Endocrinol ; 263: 43-50, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29656045

RESUMEN

Gonadotropin-releasing hormone (GnRH) is a decapeptide involved in the regulation of reproduction in all mammals, but the distribution of GnRH neurons within the brain varies widely among species. The objective of the present study was to characterize the number and distribution of GnRH neurons in the hypothalamus and preoptic area of llamas, an induced ovulator. The brains of female llamas (n = 4) were fixed, frozen and sectioned serially every 50 µm in the transverse (coronal) plane. Every 10th section was stained for immunohistochemical detection of GnRH-positive neuron cell bodies and fibers by incubation with 3,3'-diaminobenzidine. The number of counted immunoreactive cells ranged from 222 to 250 (≈241 ±â€¯13 cells in the preoptic area and hypothalamus per animal) and were localized in the medio-basal hypothalamus (44.3%), anterior hypothalamus (27%), preoptic area (14.9%), diagonal band of Broca/medial septum (13.4%), and mammillary area (0.5%). The immunoreactive cells were not localized in specific hypothalamic nuclei, but rather appeared to be distributed diffusely. The highest concentration of immunoreactive neuron fibers was in the median eminence (P < 0.05), but fibers were identified in most of the areas analyzed, including the neurohypophysis. The GnRH neurons within the hypothalamus displayed monopolar (33%), bipolar (39%), and multipolar (28%) morphologies. The bipolar type was most common in the medio-basal region (40%; P < 0.05). We conclude that GnRH neurons and fibers form a network within the anterior and medio-basal hypothalamus of llamas, suggesting the central location of mechanisms controlling reproductive processes in llamas (i.e., induced ovulation).


Asunto(s)
Camélidos del Nuevo Mundo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo , Neuronas/citología , Neuronas/metabolismo , Inducción de la Ovulación , Animales , Encéfalo/citología , Encéfalo/metabolismo , Camélidos del Nuevo Mundo/metabolismo , Recuento de Células , Forma de la Célula , Femenino , Fase Folicular/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Eminencia Media/citología , Eminencia Media/metabolismo , Inducción de la Ovulación/veterinaria , Área Preóptica/citología , Área Preóptica/metabolismo , Distribución Tisular
7.
Nutrients ; 9(9)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28862654

RESUMEN

Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia-reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs.


Asunto(s)
Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Estrés Oxidativo/fisiología , Enfermedades Cardiovasculares/metabolismo , Ácidos Grasos Omega-3 , Humanos , Precondicionamiento Isquémico Miocárdico , MicroARNs
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA