Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Tradicionales
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 608(7922): 336-345, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896751

RESUMEN

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Asunto(s)
Arqueología , Industria Lechera , Enfermedad , Genética de Población , Lactasa , Leche , Selección Genética , Animales , Animales Salvajes , Bancos de Muestras Biológicas , Cerámica/historia , Estudios de Cohortes , Industria Lechera/historia , Europa (Continente)/epidemiología , Europa (Continente)/etnología , Hambruna/estadística & datos numéricos , Frecuencia de los Genes , Genotipo , Historia Antigua , Humanos , Lactasa/genética , Leche/metabolismo , Reino Unido
2.
Proc Natl Acad Sci U S A ; 116(35): 17231-17238, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405970

RESUMEN

Archaeological evidence indicates that pig domestication had begun by ∼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ∼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process.


Asunto(s)
ADN Antiguo , ADN Mitocondrial/genética , Domesticación , Flujo Génico , Filogenia , Porcinos/genética , Animales , Europa (Continente) , Historia Antigua , Medio Oriente , Pigmentación de la Piel/genética
3.
Proc Natl Acad Sci U S A ; 115(13): 3428-3433, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531053

RESUMEN

Population genomic studies of ancient human remains have shown how modern-day European population structure has been shaped by a number of prehistoric migrations. The Neolithization of Europe has been associated with large-scale migrations from Anatolia, which was followed by migrations of herders from the Pontic steppe at the onset of the Bronze Age. Southwestern Europe was one of the last parts of the continent reached by these migrations, and modern-day populations from this region show intriguing similarities to the initial Neolithic migrants. Partly due to climatic conditions that are unfavorable for DNA preservation, regional studies on the Mediterranean remain challenging. Here, we present genome-wide sequence data from 13 individuals combined with stable isotope analysis from the north and south of Iberia covering a four-millennial temporal transect (7,500-3,500 BP). Early Iberian farmers and Early Central European farmers exhibit significant genetic differences, suggesting two independent fronts of the Neolithic expansion. The first Neolithic migrants that arrived in Iberia had low levels of genetic diversity, potentially reflecting a small number of individuals; this diversity gradually increased over time from mixing with local hunter-gatherers and potential population expansion. The impact of post-Neolithic migrations on Iberia was much smaller than for the rest of the continent, showing little external influence from the Neolithic to the Bronze Age. Paleodietary reconstruction shows that these populations have a remarkable degree of dietary homogeneity across space and time, suggesting a strong reliance on terrestrial food resources despite changing culture and genetic make-up.


Asunto(s)
ADN/análisis , Agricultores/historia , Genética de Población , Genoma Humano , Genómica/métodos , Migración Humana/historia , Arqueología , ADN/genética , Europa (Continente) , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Historia Antigua , Humanos
4.
Proc Natl Acad Sci U S A ; 112(38): 11917-22, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26351665

RESUMEN

The consequences of the Neolithic transition in Europe--one of the most important cultural changes in human prehistory--is a subject of great interest. However, its effect on prehistoric and modern-day people in Iberia, the westernmost frontier of the European continent, remains unresolved. We present, to our knowledge, the first genome-wide sequence data from eight human remains, dated to between 5,500 and 3,500 years before present, excavated in the El Portalón cave at Sierra de Atapuerca, Spain. We show that these individuals emerged from the same ancestral gene pool as early farmers in other parts of Europe, suggesting that migration was the dominant mode of transferring farming practices throughout western Eurasia. In contrast to central and northern early European farmers, the Chalcolithic El Portalón individuals additionally mixed with local southwestern hunter-gatherers. The proportion of hunter-gatherer-related admixture into early farmers also increased over the course of two millennia. The Chalcolithic El Portalón individuals showed greatest genetic affinity to modern-day Basques, who have long been considered linguistic and genetic isolates linked to the Mesolithic whereas all other European early farmers show greater genetic similarity to modern-day Sardinians. These genetic links suggest that Basques and their language may be linked with the spread of agriculture during the Neolithic. Furthermore, all modern-day Iberian groups except the Basques display distinct admixture with Caucasus/Central Asian and North African groups, possibly related to historical migration events. The El Portalón genomes uncover important pieces of the demographic history of Iberia and Europe and reveal how prehistoric groups relate to modern-day people.


Asunto(s)
ADN/genética , Agricultores/historia , Genoma , Pool de Genes , Geografía , Historia Antigua , Humanos , Dinámica Poblacional , Análisis de Componente Principal , Análisis de Secuencia de ADN , España
5.
J Anthropol Sci ; 92: 257-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25020019

RESUMEN

A case of what are most likely metabolic diseases is identified in a child buried during Chalcolithic times in the El Portalón site (Sierra de Atapuerca, Burgos, Spain). The skeleton has been directly dated by C14 to between 5030 to 5020 Cal BP. Macroscopic analysis and a CT scan reveal a set of lesions both in the skull and the long bones, which indicate that this individual probably suffered from rickets and scurvy at different stages of his/her life. The lesions are bilateral and are characterized by abnormal porosity, new bone formation and deformation of long bones. The presence of non-specific stress indicators, such as enamel hypoplasias and Harris lines, allow us to establish two times of stress associated with these pathologies: one crisis during infancy (1-3 yrs) and subsequently a second crisis at the beginning of childhood (3-5 yrs). The etiology of both metabolic diseases could be associated with abnormal feeding during these stages of life and/or the living conditions of these populations, e.g., the preparation of food and/ or the existence of infections caused by the transmission of pathogens and unhealthy hygiene. Evidence of metabolic diseases during the recent European Prehistory is rather unknown and very few cases have been reported. Thus, the child from El Portalón can add relevant information about the life and health conditions of these prehistoric populations.


Asunto(s)
Huesos/patología , Fósiles , Raquitismo/patología , Escorbuto/patología , Niño , Historia Antigua , Humanos , Paleopatología , Raquitismo/historia , Escorbuto/historia , Esqueleto , España
6.
Mol Biol Evol ; 31(4): 975-83, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24448642

RESUMEN

Lactase persistence (LP) is a genetically determined trait whereby the enzyme lactase is expressed throughout adult life. Lactase is necessary for the digestion of lactose--the main carbohydrate in milk--and its production is downregulated after the weaning period in most humans and all other mammals studied. Several sources of evidence indicate that LP has evolved independently, in different parts of the world over the last 10,000 years, and has been subject to strong natural selection in dairying populations. In Europeans, LP is strongly associated with, and probably caused by, a single C to T mutation 13,910 bp upstream of the lactase (LCT) gene (-13,910*T). Despite a considerable body of research, the reasons why LP should provide such a strong selective advantage remain poorly understood. In this study, we examine one of the most widely cited hypotheses for selection on LP--that fresh milk consumption supplemented the poor vitamin D and calcium status of northern Europe's early farmers (the calcium assimilation hypothesis). We do this by testing for natural selection on -13,910*T using ancient DNA data from the skeletal remains of eight late Neolithic Iberian individuals, whom we would not expect to have poor vitamin D and calcium status because of relatively high incident UVB light levels. None of the eight samples successfully typed in the study had the derived T-allele. In addition, we reanalyze published data from French Neolithic remains to both test for population continuity and further examine the evolution of LP in the region. Using simulations that accommodate genetic drift, natural selection, uncertainty in calibrated radiocarbon dates, and sampling error, we find that natural selection is still required to explain the observed increase in allele frequency. We conclude that the calcium assimilation hypothesis is insufficient to explain the spread of LP in Europe.


Asunto(s)
Calcio/metabolismo , Absorción Intestinal/genética , Lactasa/genética , Selección Genética , ADN Mitocondrial/genética , Evolución Molecular , Femenino , Francia , Frecuencia de los Genes , Flujo Genético , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA