RESUMEN
Chalcogen bonds are the specific interactions involving group 16 elements as electrophilic sites. The role of chalcogen atoms as sticky sites in biomolecules is underappreciated, and the few available studies have mostly focused on S. Here, we carried out a statistical analysis over 3562 protein structures in the Protein Data Bank (PDB) containing 18â¯266 selenomethionines and found that Se···O chalcogen bonds are commonplace. These findings may help the future design of functional peptides and contribute to understanding the role of Se in nature.
Asunto(s)
Calcógenos/química , Fructoquinasas/química , Selenio/química , Aminoácidos/química , Cristalografía por Rayos X , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Selenometionina/química , Relación Estructura-Actividad , Xylella/enzimologíaRESUMEN
Uranium toxicity depends on its chemical properties rather than on its radioactivity and involves its interaction with macromolecules. Here, a systematic survey of the structural features of the uranyl sites observed in protein crystal structures deposited in the Protein Data Bank is reported. Beside the two uranyl oxygens, which occupy the axial positions, uranium tends to be coordinated by five other oxygen atoms, which occupy the equatorial vertices of a pentagonal bipyramid. Even if one or more of these equatorial positions are sometime empty, they can be occupied only by oxygen atoms that belong to the carboxylate groups of Glu and Asp side-chains, usually acting as monodentate ligands, to water molecules, or to acetate anions. Although several uranium sites appear undefined or unrefined, with a single uranium atom that lacks the two uranyl oxygen atoms, this problem seems to become less frequent in recent years. However, it is clear that the crystallographic refinements of the uranyl sites are not always well restrained and a better parametrization of these restraints seems to be necessary.
Asunto(s)
Proteínas/química , Uranio/química , Bases de Datos de Proteínas , Oxígeno/química , EstereoisomerismoRESUMEN
The highly conserved G-M-N motif of the CorA-Mrs2-Alr1 family of Mg(2+) channels has been shown to be essential for Mg(2+) transport. We performed random mutagenesis of the G-M-N sequence of Saccharomyces cerevisiae Mrs2p in an unbiased genetic screen. A large number of mutants still capable of Mg(2+) influx, albeit below the wild-type level, were generated. Growth complementation assays, performed in media supplemented with Ca(2+) or Co(2+) or Mn(2+) or Zn(2+) at varying concentrations, lead to identification of mutants with reduced growth in the presence of Mn(2+) and Zn(2+). We hereby conclude that (1) at least two, but predominantly all three amino acids of the G-M-N motif must be replaced by certain combinations of other amino acids to remain functional, (2) replacement of any single amino acid within the G-M-N motif always impairs the function of Mrs2p, and (3) we show that the G-M-N motif determines ion selectivity, likely in concurrence with the negatively charged loop at the entrance of the channel thereby forming the Mrs2p selectivity filter.