Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 144(10): 3142-3158, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34086871

RESUMEN

Traumatic brain injury (TBI) leads to major brain anatomopathological damages underlined by neuroinflammation, oxidative stress and progressive neurodegeneration, ultimately leading to motor and cognitive deterioration. The multiple pathological events resulting from TBI can be addressed not by a single therapeutic approach, but rather by a synergistic biotherapy capable of activating a complementary set of signalling pathways and providing synergistic neuroprotective, anti-inflammatory, antioxidative, and neurorestorative activities. Human platelet lysate might fulfil these requirements as it is composed of a plethora of biomolecules readily accessible as a TBI biotherapy. In the present study, we tested the therapeutic potential of human platelet lysate using in vitro and in vivo models of TBI. We first prepared and characterized platelet lysate from clinical-grade human platelet concentrates. Platelets were pelletized, lysed by three freeze-thaw cycles, and centrifuged. The supernatant was purified by 56°C 30 min heat treatment and spun to obtain the heat-treated platelet pellet lysate that was characterized by ELISA and proteomic analyses. Two mouse models were used to investigate platelet lysate neuroprotective potential. The injury was induced by an in-house manual controlled scratching of the animals' cortex or by controlled cortical impact injury. The platelet lysate treatment was performed by topical application of 60 µl in the lesioned area, followed by daily 60 µl intranasal administration from Day 1 to 6 post-injury. Platelet lysate proteomics identified over 1000 proteins including growth factors, neurotrophins, and antioxidants. ELISA detected several neurotrophic and angiogenic factors at ∼1-50 ng/ml levels. We demonstrate, using two mouse models of TBI, that topical application and intranasal platelet lysate consistently improved mouse motor function in the beam and rotarod tests, mitigated cortical neuroinflammation, and oxidative stress in the injury area, as revealed by downregulation of pro-inflammatory genes and the reduction in reactive oxygen species levels. Moreover, platelet lysate treatment reduced the loss of cortical synaptic proteins. Unbiased proteomic analyses revealed that heat-treated platelet pellet lysate reversed several pathways promoted by both controlled cortical impact and cortical brain scratch and related to transport, postsynaptic density, mitochondria or lipid metabolism. The present data strongly support, for the first time, that human platelet lysate is a reliable and effective therapeutic source of neurorestorative factors. Therefore, brain administration of platelet lysate is a therapeutical strategy that deserves serious and urgent consideration for universal brain trauma treatment.


Asunto(s)
Terapia Biológica/métodos , Plaquetas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Administración Intranasal , Animales , Lesiones Traumáticas del Encéfalo/patología , Línea Celular Tumoral , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Inflammopharmacology ; 29(3): 735-752, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33881683

RESUMEN

This study aims to investigate the activity of n-hexane, ethyl acetate and butanol fractions obtained from Arrabidaea chica Verlot against MIA-induced osteoarthritis (OA). The antinociceptive potentials of each fraction were evaluated through a cyclooxygenase (COX) 1 and 2 inhibition test and an in vivo OA-model. In addition, toxicity assessments in the liver, spleen and kidney, as well as radiographic and histopathological knee analyses, were performed. The chemical composition of the n-hexane fraction was elucidated, and a molecular docking protocol was carried out to identify which compounds are associated with the detected bioactivity. The n-hexane A. chica fraction preferentially inhibits COX-2, with 90% inhibition observed at 10 µg/mL. The fractions also produced significant improvements in OA incapacity, motor activity and hyperalgesia parameters and in radiological knee conditions. However, concerning the histopathological evaluations, these improvements were only significant in the hexane and ethyl acetate fraction treatments, which resulted in better average scores, suggesting that these fractions slow OA-promoted joint injury progression. Histopathological organ analyses indicate that the fractions are not toxic to animals. Twenty compounds were identified in the n-hexane fraction, comprising fatty acids, terpenes and phytosterols. In silico analyses indicate the presence of favourable interactions between some of the identified compounds and the COX-2 enzyme, mainly concerning alpha-tocopherol (Vitamin E), squalene and beta-sitosterol. The findings indicate that A. chica fractions display analgesic, anti-inflammatory properties, are non-toxic and are able to slow OA progression, and may, therefore, be prioritized as natural products in OA human clinical trials.


Asunto(s)
Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Osteoartritis/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Plantas Medicinales , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Masculino , Simulación del Acoplamiento Molecular/métodos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Osteoartritis/metabolismo , Osteoartritis/patología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Estructura Secundaria de Proteína , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA