Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biomater Sci ; 11(7): 2336-2347, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36804651

RESUMEN

Targeting brain lipid metabolism is a promising strategy to regulate the energy balance and fight metabolic diseases such as obesity. The development of stable platforms for selective delivery of drugs, particularly to the hypothalamus, is a challenge but a possible solution for these metabolic diseases. Attenuating fatty acid oxidation in the hypothalamus via CPT1A inhibition leads to satiety, but this target is difficult to reach in vivo with the current drugs. We propose using an advanced crosslinked polymeric micelle-type nanomedicine that can stably load the CPT1A inhibitor C75-CoA for in vivo control of the energy balance. Central administration of the nanomedicine induced a rapid attenuation of food intake and body weight in mice via regulation of appetite-related neuropeptides and neuronal activation of specific hypothalamic regions driving changes in the liver and adipose tissue. This nanomedicine targeting brain lipid metabolism was successful in the modulation of food intake and peripheral metabolism in mice.


Asunto(s)
Metabolismo de los Lípidos , Nanomedicina , Ratones , Animales , Metabolismo Energético , Obesidad/metabolismo , Hipotálamo/metabolismo
2.
J Neuroendocrinol ; 35(9): e13234, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36735894

RESUMEN

Tackling the growing incidence and prevalence of obesity urgently requires uncovering new molecular pathways with therapeutic potential. The brain, and in particular the hypothalamus, is a major integrator of metabolic signals from peripheral tissues that regulate functions such as feeding behavior and energy expenditure. In obesity, hypothalamic capacity to sense nutritional status and regulate these functions is altered. An emerging line of research is that hypothalamic lipid metabolism plays a critical role in regulating energy balance. Here, we focus on the carnitine palmitoyltransferase 1 (CPT1) enzyme family responsible for long-chain fatty acid metabolism. The evidence suggests that two of its isoforms expressed in the brain, CPT1A and CPT1C, play a crucial role in hypothalamic lipid metabolism, and their promise as targets in food intake and bodyweight management is currently being intensively investigated. In this review we describe and discuss the metabolic actions and potential up- and downstream effectors of hypothalamic CPT1 isoforms, and posit the need to develop innovative nanomedicine platforms for selective targeting of CPT1 and related nutrient sensors in specific brain areas as potential next-generation therapy to treat obesity.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Metabolismo Energético , Humanos , Carnitina O-Palmitoiltransferasa/metabolismo , Metabolismo Energético/fisiología , Obesidad/metabolismo , Isoformas de Proteínas/metabolismo , Hipotálamo/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675212

RESUMEN

Sensing of long-chain fatty acids (LCFA) in the hypothalamus modulates energy balance, and its disruption leads to obesity. To date, the effects of saturated or unsaturated LCFA on hypothalamic-brown adipose tissue (BAT) axis and the underlying mechanisms have remained largely unclear. Our aim was to characterize the main molecular pathways involved in the hypothalamic regulation of BAT thermogenesis in response to LCFA with different lengths and degrees of saturation. One-week administration of high-fat diet enriched in monounsaturated FA led to higher BAT thermogenesis compared to a saturated FA-enriched diet. Intracerebroventricular infusion of oleic and linoleic acids upregulated thermogenesis markers and temperature in brown fat of mice, and triggered neuronal activation of paraventricular (PaV), ventromedial (VMH) and arcuate (ARC) hypothalamic nuclei, which was not found with saturated FAs. The neuron-specific protein carnitine palmitoyltransferase 1-C (CPT1C) was a crucial effector of oleic acid since the FA action was blunted in CPT1C-KO mice. Moreover, changes in the AMPK/ACC/malonyl-CoA pathway and fatty acid synthase expression were evoked by oleic acid. Altogether, central infusion of unsaturated but not saturated LCFA increases BAT thermogenesis through CPT1C-mediated sensing of FA metabolism shift, which in turn drive melanocortin system activation. These findings add new insight into neuronal circuitries activated by LCFA to drive thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Hipotálamo , Termogénesis , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Ácidos Grasos/metabolismo , Hipotálamo/metabolismo , Ácidos Oléicos/metabolismo , Termogénesis/genética , Termogénesis/fisiología
4.
Nutrients ; 14(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235789

RESUMEN

In recent decades, traditional eating habits have been replaced by a more globalized diet, rich in saturated fatty acids and simple sugars. Extensive evidence shows that these dietary factors contribute to cognitive health impairment as well as increase the incidence of metabolic diseases such as obesity and diabetes. However, how these nutrients modulate synaptic function and neuroplasticity is poorly understood. We review the Western, ketogenic, and paleolithic diets for their effects on cognition and correlations with synaptic changes, focusing mainly (but not exclusively) on animal model studies aimed at tracing molecular alterations that may contribute to impaired human cognition. We observe that memory and learning deficits mediated by high-fat/high-sugar diets, even over short exposure times, are associated with reduced arborization, widened synaptic cleft, narrowed post-synaptic zone, and decreased activity-dependent synaptic plasticity in the hippocampus, and also observe that these alterations correlate with deregulation of the AMPA-type glutamate ionotropic receptors (AMPARs) that are crucial to neuroplasticity. Furthermore, we explored which diet-mediated mechanisms modulate synaptic AMPARs and whether certain supplements or nutritional interventions could reverse deleterious effects, contributing to improved learning and memory in older people and patients with Alzheimer's disease.


Asunto(s)
Cognición , Receptores AMPA , Anciano , Animales , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Glutamatos/farmacología , Hipocampo/metabolismo , Humanos , Monosacáridos/farmacología , Plasticidad Neuronal , Nutrientes , Receptores AMPA/metabolismo , Azúcares/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
5.
Cell Mol Life Sci ; 78(23): 7469-7490, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34718828

RESUMEN

The crucial role of the hypothalamus in the pathogenesis of obesity is widely recognized, while the precise molecular and cellular mechanisms involved are the focus of intense research. A disrupted endocannabinoid system, which critically modulates feeding and metabolic functions, through central and peripheral mechanisms, is a landmark indicator of obesity, as corroborated by investigations centered on the cannabinoid receptor CB1, considered to offer promise in terms of pharmacologically targeted treatment for obesity. In recent years, novel insights have been obtained, not only into relation to the mode of action of CB receptors, but also CB ligands, non-CB receptors, and metabolizing enzymes considered to be part of the endocannabinoid system (particularly the hypothalamus). The outcome has been a substantial expansion in knowledge of this complex signaling system and in drug development. Here we review recent literature, providing further evidence on the role of hypothalamic endocannabinoids in regulating energy balance and the implication for the pathophysiology of obesity. We discuss how these lipids are dynamically regulated in obesity onset, by diet and metabolic hormones in specific hypothalamic neurons, the impact of gender, and the role of endocannabinoid metabolizing enzymes as promising targets for tackling obesity and related diseases.


Asunto(s)
Endocannabinoides/metabolismo , Hipotálamo/patología , Obesidad/patología , Receptores de Cannabinoides/metabolismo , Animales , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Obesidad/etiología , Obesidad/metabolismo
6.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201257

RESUMEN

Despite the substantial role played by the hypothalamus in the regulation of energy balance and glucose homeostasis, the exact mechanisms and neuronal circuits underlying this regulation remain poorly understood. In the last 15 years, investigations using transgenic models, optogenetic, and chemogenetic approaches have revealed that SF1 neurons in the ventromedial hypothalamus are a specific lead in the brain's ability to sense glucose levels and conduct insulin and leptin signaling in energy expenditure and glucose homeostasis, with minor feeding control. Deletion of hormonal receptors, nutritional sensors, or synaptic receptors in SF1 neurons triggers metabolic alterations mostly appreciated under high-fat feeding, indicating that SF1 neurons are particularly important for metabolic adaptation in the early stages of obesity. Although these studies have provided exciting insight into the implications of hypothalamic SF1 neurons on whole-body energy homeostasis, new questions have arisen from these results. Particularly, the existence of neuronal sub-populations of SF1 neurons and the intricate neurocircuitry linking these neurons with other nuclei and with the periphery. In this review, we address the most relevant studies carried out in SF1 neurons to date, to provide a global view of the central role played by these neurons in the pathogenesis of obesity and diabetes.


Asunto(s)
Diabetes Mellitus/patología , Hipotálamo/patología , Neuronas/patología , Obesidad/patología , Factor Esteroidogénico 1/metabolismo , Animales , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Humanos , Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/etiología , Obesidad/metabolismo
7.
Cell Metab ; 32(6): 951-966.e8, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080217

RESUMEN

Childhood obesity, especially in girls, is frequently bound to earlier puberty, which is linked to higher disease burden later in life. The mechanisms underlying this association remain elusive. Here we show that brain ceramides participate in the control of female puberty and contribute to its alteration in early-onset obesity in rats. Postnatal overweight caused earlier puberty and increased hypothalamic ceramide content, while pharmacological activation of ceramide synthesis mimicked the pubertal advancement caused by obesity, specifically in females. Conversely, central blockade of de novo ceramide synthesis delayed puberty and prevented the effects of the puberty-activating signal, kisspeptin. This phenomenon seemingly involves a circuit encompassing the paraventricular nucleus (PVN) and ovarian sympathetic innervation. Early-onset obesity enhanced PVN expression of SPTLC1, a key enzyme for ceramide synthesis, and advanced the maturation of the ovarian noradrenergic system. In turn, obesity-induced pubertal precocity was reversed by virogenetic suppression of SPTLC1 in the PVN. Our data unveil a pathway, linking kisspeptin, PVN ceramides, and sympathetic ovarian innervation, as key for obesity-induced pubertal precocity.


Asunto(s)
Ceramidas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Ovario/metabolismo , Obesidad Infantil , Pubertad Precoz , Animales , Femenino , Masculino , Obesidad Infantil/complicaciones , Obesidad Infantil/metabolismo , Pubertad Precoz/etiología , Pubertad Precoz/metabolismo , Ratas Wistar
8.
J Lipid Res ; 60(7): 1260-1269, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31138606

RESUMEN

The endocannabinoid (eCB) system regulates energy homeostasis and is linked to obesity development. However, the exact dynamic and regulation of eCBs in the hypothalamus during obesity progression remain incompletely described and understood. Our study examined the time course of responses in two hypothalamic eCBs, 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamine (AEA), in male and female mice during diet-induced obesity and explored the association of eCB levels with changes in brown adipose tissue (BAT) thermogenesis and body weight. We fed mice a high-fat diet (HFD), which induced a transient increase (substantial at 7 days) in hypothalamic eCBs, followed by a progressive decrease to basal levels with a long-term HFD. This transient rise at early stages of obesity is considered a physiologic compensatory response to BAT thermogenesis, which is activated by diet surplus. The eCB dynamic was sexually dimorphic: hypothalamic eCBs levels were higher in female mice, who became obese at later time points than males. The hypothalamic eCBs time course positively correlated with thermogenesis activation, but negatively matched body weight, leptinemia, and circulating eCB levels. Increased expression of eCB-synthetizing enzymes accompanied the transient hypothalamic eCB elevation. Icv injection of eCB did not promote BAT thermogenesis; however, administration of thermogenic molecules, such as central leptin or a peripheral ß3-adrenoreceptor agonist, induced a significant increase in hypothalamic eCBs, suggesting a directional link from BAT thermogenesis to hypothalamic eCBs. This study contributes to the understanding of hypothalamic regulation of obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Endocannabinoides/metabolismo , Hipotálamo/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Femenino , Glicéridos/metabolismo , Masculino , Ratones , Alcamidas Poliinsaturadas/metabolismo , Caracteres Sexuales
9.
Mol Metab ; 19: 75-85, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448371

RESUMEN

OBJECTIVE: Carnitine palmitoyltransferase 1C (CPT1C) is implicated in central regulation of energy homeostasis. Our aim was to investigate whether CPT1C in the ventromedial nucleus of the hypothalamus (VMH) is involved in the activation of brown adipose tissue (BAT) thermogenesis in the early stages of diet-induced obesity. METHODS: CPT1C KO and wild type (WT) mice were exposed to short-term high-fat (HF) diet feeding or to intracerebroventricular leptin administration and BAT thermogenesis activation was evaluated. Body weight, adiposity, food intake, and leptinemia were also assayed. RESULTS: Under 7 days of HF diet, WT mice showed a maximum activation peak of BAT thermogenesis that counteracted obesity development, whereas this activation was impaired in CPT1C KO mice. KO animals evidenced higher body weight, adiposity, hyperleptinemia, ER stress, and disrupted hypothalamic leptin signaling. Leptin-induced BAT thermogenesis was abolished in KO mice. These results indicate an earlier onset leptin resistance in CPT1C KO mice. Since AMPK in the VMH is crucial in the regulation of BAT thermogenesis, we analyzed if CPT1C was a downstream factor of this pathway. Genetic inactivation of AMPK within the VMH was unable to induce BAT thermogenesis and body weight loss in KO mice, indicating that CPT1C is likely downstream AMPK in the central mechanism modulating thermogenesis within the VMH. Quite opposite, the expression of CPT1C in the VMH restored the phenotype. CONCLUSION: CPT1C is necessary for the activation of BAT thermogenesis driven by leptin, HF diet exposure, and AMPK inhibition within the VMH. This study underscores the importance of CPT1C in the activation of BAT thermogenesis to counteract diet-induced obesity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Obesidad/metabolismo , Adiposidad , Animales , Peso Corporal , Dieta Alta en Grasa , Ingestión de Alimentos , Metabolismo Energético , Homeostasis , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Termogénesis/fisiología , Núcleo Hipotalámico Ventromedial/metabolismo
10.
Mol Neurobiol ; 55(9): 7216-7228, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29396649

RESUMEN

Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in cortex CPT1A activity and GABAT activity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metabolism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for differential effects of ghrelin in the central nervous system.


Asunto(s)
Corteza Cerebral/metabolismo , Ácidos Grasos/metabolismo , Ghrelina/farmacología , Ácido gamma-Aminobutírico/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Citratos/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Eliminación de Gen , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metaboloma/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidación-Reducción
11.
Cell Metab ; 26(1): 212-229.e12, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683288

RESUMEN

Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.


Asunto(s)
Metabolismo Energético , Hipotálamo/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Termogénesis , Triyodotironina/metabolismo
12.
Endocrinology ; 158(7): 2226-2238, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472467

RESUMEN

Carnitine palmitoyltransferase (CPT) 1C, a brain-specific protein localized in the endoplasmic reticulum of neurons, is expressed in almost all brain regions. Based on global knockout (KO) models, CPT1C has demonstrated relevance in hippocampus-dependent spatial learning and in hypothalamic regulation of energy balance. Specifically, it has been shown that CPT1C is protective against high-fat diet-induced obesity (DIO), and that CPT1C KO mice show reduced peripheral fatty acid oxidation (FAO) during both fasting and DIO. However, the mechanisms mediating CPT1C-dependent regulation of energy homeostasis remain unclear. Here, we focus on the mechanistic understanding of hypothalamic CPT1C on the regulation of fuel selection in liver and muscle of male mice during energy deprivation situations, such as fasting. In CPT1C-deficient mice, modulation of the main hypothalamic energy sensors (5' adenosine monophosphate-activated protein kinase, Sirtuin 1, and mammalian target of rapamycin) was impaired and plasma catecholamine levels were decreased. Consequently, CPT1C-deficient mice presented defective fasting-induced FAO in liver, leading to higher triacylglycerol accumulation and lower glycogen levels. Moreover, muscle pyruvate dehydrogenase activity was increased, which was indicative of glycolysis enhancement. The respiratory quotient did not decrease in CPT1C KO mice after 48 hours of fasting, confirming a defective switch on fuel substrate selection under hypoglycemia. Phenotype reversion studies identified the mediobasal hypothalamus (MBH) as the main area mediating CPT1C effects on fuel selection. Overall, our data demonstrate that CPT1C in the MBH is necessary for proper hypothalamic sensing of a negative energy balance and fuel partitioning in liver and muscle.


Asunto(s)
Carnitina O-Palmitoiltransferasa/fisiología , Metabolismo Energético/genética , Hipotálamo/fisiología , Hígado/metabolismo , Músculos/metabolismo , Animales , Encéfalo/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Homeostasis , Hipotálamo/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética
13.
Diabetes ; 66(1): 87-99, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27634226

RESUMEN

The chaperone GRP78/BiP (glucose-regulated protein 78 kDa/binding immunoglobulin protein) modulates protein folding in reply to cellular insults that lead to endoplasmic reticulum (ER) stress. This study investigated the role of hypothalamic GRP78 on energy balance, with particular interest in thermogenesis and browning of white adipose tissue (WAT). For this purpose, we used diet-induced obese rats and rats administered thapsigargin, and by combining metabolic, histologic, physiologic, pharmacologic, thermographic, and molecular techniques, we studied the effect of genetic manipulation of hypothalamic GRP78. Our data showed that rats fed a high-fat diet or that were centrally administered thapsigargin displayed hypothalamic ER stress, whereas genetic overexpression of GRP78 specifically in the ventromedial nucleus of the hypothalamus was sufficient to alleviate ER stress and to revert the obese and metabolic phenotype. Those effects were independent of feeding and leptin but were related to increased thermogenic activation of brown adipose tissue and induction of browning in WAT and could be reversed by antagonism of ß3 adrenergic receptors. This evidence indicates that modulation of hypothalamic GRP78 activity may be a potential strategy against obesity and associated comorbidities.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Western Blotting , Dieta Alta en Grasa , Ácidos Grasos no Esterificados/sangre , Inmunohistoquímica , Masculino , Obesidad/sangre , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Ácido Tauroquenodesoxicólico/uso terapéutico , Temperatura , Termogénesis/efectos de los fármacos
14.
Cell Rep ; 9(1): 366-377, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25284795

RESUMEN

Hypothalamic endoplasmic reticulum (ER) stress is a key mechanism leading to obesity. Here, we demonstrate that ceramides induce lipotoxicity and hypothalamic ER stress, leading to sympathetic inhibition, reduced brown adipose tissue (BAT) thermogenesis, and weight gain. Genetic overexpression of the chaperone GRP78/BiP (glucose-regulated protein 78 kDa/binding immunoglobulin protein) in the ventromedial nucleus of the hypothalamus (VMH) abolishes ceramide action by reducing hypothalamic ER stress and increasing BAT thermogenesis, which leads to weight loss and improved glucose homeostasis. The pathophysiological relevance of this mechanism is demonstrated in obese Zucker rats, which show increased hypothalamic ceramide levels and ER stress. Overexpression of GRP78 in the VMH of these animals reduced body weight by increasing BAT thermogenesis as well as decreasing leptin and insulin resistance and hepatic steatosis. Overall, these data identify a triangulated signaling network involving central ceramides, hypothalamic lipotoxicity/ER stress, and BAT thermogenesis as a pathophysiological mechanism of obesity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ceramidas/metabolismo , Hipotálamo/metabolismo , Obesidad/etiología , Termogénesis/fisiología , Animales , Estrés del Retículo Endoplásmico , Resistencia a la Insulina/fisiología , Masculino , Obesidad/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Pérdida de Peso
15.
Diabetes ; 62(7): 2329-37, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23493572

RESUMEN

Recent data suggest that ghrelin exerts its orexigenic action through regulation of hypothalamic AMP-activated protein kinase pathway, leading to a decline in malonyl-CoA levels and desinhibition of carnitine palmitoyltransferase 1A (CPT1A), which increases mitochondrial fatty acid oxidation and ultimately enhances the expression of the orexigenic neuropeptides agouti-related protein (AgRP) and neuropeptide Y (NPY). However, it is unclear whether the brain-specific isoform CPT1C, which is located in the endoplasmic reticulum of neurons, may play a role in this action. Here, we demonstrate that the orexigenic action of ghrelin is totally blunted in CPT1C knockout (KO) mice, despite having the canonical ghrelin signaling pathway activated. We also demonstrate that ghrelin elicits a marked upregulation of hypothalamic C18:0 ceramide levels mediated by CPT1C. Notably, central inhibition of ceramide synthesis with myriocin negated the orexigenic action of ghrelin and normalized the levels of AgRP and NPY, as well as their key transcription factors phosphorylated cAMP-response element-binding protein and forkhead box O1. Finally, central treatment with ceramide induced food intake and orexigenic neuropeptides expression in CPT1C KO mice. Overall, these data indicate that, in addition to formerly reported mechanisms, ghrelin also induces food intake through regulation of hypothalamic CPT1C and ceramide metabolism, a finding of potential importance for the understanding and treatment of obesity.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Ceramidas/metabolismo , Ingestión de Alimentos/fisiología , Ghrelina/farmacología , Hipotálamo/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/genética , Ingestión de Alimentos/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
16.
Proc Natl Acad Sci U S A ; 108(23): 9691-6, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21593415

RESUMEN

Brain-specific carnitine palmitoyltransferase-1 (CPT-1c) is implicated in CNS control of food intake. In this article, we explore the role of hypothalamic CPT-1c in leptin's anorexigenic actions. We first show that adenoviral overexpression of CPT-1c in hypothalamic arcuate nucleus of rats increases food intake and concomitantly up-regulates orexigenic neuropeptide Y (NPY) and Bsx (a transcription factor of NPY). Then, we demonstrate that this overexpression antagonizes the anorectic actions induced by central leptin or compound cerulenin (an inhibitor of fatty acid synthase). The overexpression of CPT-1c also blocks leptin-induced down-regulations of NPY and Bsx. Furthermore, the anorectic actions of central leptin or cerulenin are impaired in mice with brain CPT-1c deleted. Both anorectic effects require elevated levels of hypothalamic arcuate nucleus (Arc) malonyl-CoA, a fatty acid-metabolism intermediate that has emerged as a mediator in hypothalamic control of food intake. Thus, these data suggest that CPT-1c is implicated in malonyl-CoA action in leptin's hypothalamic anorectic signaling pathways. Moreover, ceramide metabolism appears to play a role in leptin's central control of feeding. Leptin treatment decreases Arc ceramide levels, with the decrease being important in leptin-induced anorectic actions and down-regulations of NPY and Bsx. Of interest, our data indicate that leptin impacts ceramide metabolism through malonyl-CoA and CPT-1c, and ceramide de novo biosynthesis acts downstream of both malonyl-CoA and CPT-1c in mediating their effects on feeding and expressions of NPY and Bsx. In summary, we provide insights into the important roles of malonyl-CoA, CPT-1c, and ceramide metabolism in leptin's hypothalamic signaling pathways.


Asunto(s)
Encéfalo/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Ceramidas/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Leptina/farmacología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Western Blotting , Peso Corporal/efectos de los fármacos , Carnitina O-Palmitoiltransferasa/genética , Cerulenina/farmacología , Humanos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Leptina/administración & dosificación , Masculino , Malonil Coenzima A/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Am J Physiol Regul Integr Comp Physiol ; 301(1): R209-17, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21508288

RESUMEN

Hypothalamic fatty acid metabolism is involved in central nervous system controls of feeding and energy balance. Malonyl-CoA, an intermediate of fatty acid biosynthesis, is emerging as a significant player in these processes. Notably, hypothalamic malonyl-CoA has been implicated in leptin's feeding effect. Leptin treatment increases malonyl-CoA level in the hypothalamic arcuate nucleus (Arc), and this increase is required for leptin-induced decrease in food intake. However, the intracellular downstream mediators of malonyl-CoA's feeding effect have not been identified. A primary biochemical action of malonyl-CoA is the inhibition of the acyltransferase activity of carnitine palmitoyltransferase-1 (CPT-1). In the hypothalamus, the predominant isoform of CPT-1 that possesses the acyltransferase activity is CPT-1 liver type (CPT-1a). To address the role of CPT-1a in malonyl-CoA's anorectic action, we used a recombinant adenovirus expressing a mutant CPT-1a that is insensitive to malonyl-CoA inhibition. We show that Arc overexpression of the mutant CPT-1a blocked the malonyl-CoA-mediated inhibition of CPT-1 activity. However, the overexpression of this mutant did not affect the anorectic actions of leptin or central cerulenin for which an increase in Arc malonyl-CoA level is also required. Thus, CPT-1a does not appear to be involved in the malonyl-CoA's anorectic actions induced by leptin. Furthermore, long-chain fatty acyl-CoAs, substrates of CPT-1a, dissociate from malonyl-CoA's actions in the Arc under different feeding states. Together, our results suggest that Arc intracellular mechanisms of malonyl-CoA's anorectic actions induced by leptin are independent of CPT-1a. The data suggest that target(s), rather than CPT-1a, mediates malonyl-CoA action on feeding.


Asunto(s)
Regulación del Apetito/fisiología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Hipotálamo/fisiología , Leptina/fisiología , Malonil Coenzima A/fisiología , Aciltransferasas/fisiología , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/fisiología , Cerulenina/metabolismo , Metabolismo Energético/fisiología , Masculino , Modelos Animales , Mutación/genética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA