RESUMEN
Supracerebellar transtentorial (SCTT) approaches have become a popular option for treatment of a variety of pathologies in the medial and basal temporal and occipital lobes and thalamus. Transtentorial approaches provide numerous advantages over transcortical approaches, including obviating the need to traverse eloquent cortex, not requiring parenchymal retraction, and circumventing critical vascular structures. All of these approaches require a tentorial opening, and numerous techniques for retraction of the incised tentorium have been described, including sutures, fixed retractors, and electrocautery. However, all of these techniques have considerable drawbacks and limitations. The authors describe a novel application of clip retraction of the tentorium to the supracerebellar approaches in which an aneurysm clip is used to suspend the tentorial flap, and an illustrative case is provided. Clip retraction of the tentorium is an efficient, straightforward adaptation of an established technique, typically used for subtemporal approaches, that improves visualization and surgical ergonomics with little risk to nearby venous structures. The authors find this technique particularly useful for the contralateral SCTT approaches.
Asunto(s)
Cerebelo/cirugía , Procedimientos Neuroquirúrgicos/métodos , Anciano , Neoplasias Encefálicas/cirugía , Cerebelo/diagnóstico por imagen , Trastornos Cerebrovasculares/cirugía , Epilepsia Refractaria/cirugía , Electrocoagulación , Ergonomía , Femenino , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Humanos , Lóbulo Occipital/cirugía , Convulsiones/cirugía , Instrumentos Quirúrgicos , Lóbulo Temporal/cirugía , Tálamo/cirugía , Resultado del TratamientoRESUMEN
OBJECTIVE: Obesity has become a worldwide epidemic, with very few long-term successful treatment options for refractory disease. Deep brain stimulation (DBS) of the bilateral lateral hypothalamus (LH) in refractory obesity has been performed safely. However, questions remain regarding the optimal settings and its effects on metabolic rate. The goals of our experiment were to determine the optimal DBS settings and the actual effect of optimal stimulation on energy expenditure. METHODS: After bilateral LH DBS implantation, 2 subjects with treatment refractory obesity underwent 4 days of metabolic testing. The subjects slept overnight in a respiratory chamber to measure their baseline sleep energy expenditure, followed by 4 consecutive days of resting metabolic rate (RMR) testing at different stimulation settings. On day 4, the optimized DBS settings were used, and sleep energy expenditure was measured again overnight in the room calorimeter. RESULTS: During daily testing, the RMR fluctuated acutely with changes in stimulation settings and returned to baseline immediately after turning off the stimulation. Optimal stimulation settings selected for participants showed a 20% and 16% increase in RMR for the 2 participants. Overnight sleep energy expenditure measurements at these optimized settings on day 4 yielded a 10.4% and 4.8% increase over the baseline measurements for the 2 participants. CONCLUSIONS: These findings have demonstrated the efficacy of optimized DBS of the LH on increasing the RMR acutely and maintaining this increase during overnight sleep. These promising preliminary findings have laid the groundwork for the possible treatment of refractory obesity with DBS.