Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 27(12): 2805-2817, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35035137

RESUMEN

Water deficit triggers physiological, biochemical, and molecular changes in leaves that could be important for overall plant adaptive response and it can affect tomato yield and quality. To assess the influence of long-term moderate drought on leaves, four tomato accessions from MAGIC TOM populations were selected on the basis of their differences in fruit size and were grown in a glasshouse under control and water deficit conditions. Drought affected stomatal conductance more in large fruit genotypes compared to cherry genotypes and this could be related to higher abscisic acid (ABA) leaf content. Compared to large fruits, cherry tomato genotypes coped better with water stress by reducing leaf area and maintaining photochemical efficiency as important adaptive responses. Accumulation of soluble sugars in the cherry genotypes and organic acid in the leaves of the larger fruit genotypes indicated their role in the osmoregulation and the continuum of source/sink gradient under stress conditions. Long-term moderate drought induced upregulation of NCED gene in all four genotypes that was associated with ABA production. The increase in the expression of ZEP gene was found only in the LA1420 cherry genotype and indicated its possible role in the protection against photooxidative stress induced by prolonged water stress. In addition, upregulation of the APX genes, higher accumulation of vitamin C and total antioxidant capacity in cherry genotype leaves highlighted their greater adaptive response against long-term drought stress compared to larger fruit genotypes that could also reflect at fruit level. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01102-2.

2.
Ann Bot ; 115(1): 55-66, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25434027

RESUMEN

BACKGROUND AND AIMS: In flowering plants, fertilization relies on the delivery of the sperm cells carried by the pollen tube to the ovule. During the tip growth of the pollen tube, proper assembly of the cell wall polymers is required to maintain the mechanical properties of the cell wall. Xyloglucan (XyG) is a cell wall polymer known for maintaining the wall integrity and thus allowing cell expansion. In most angiosperms, the XyG of somatic cells is fucosylated, except in the Asterid clade (including the Solanaceae), where the fucosyl residues are replaced by arabinose, presumably due to an adaptive and/or selective diversification. However, it has been shown recently that XyG of Nicotiana alata pollen tubes is mostly fucosylated. The objective of the present work was to determine whether such structural differences between somatic and gametophytic cells are a common feature of Nicotiana and Solanum (more precisely tomato) genera. METHODS: XyGs of pollen tubes of domesticated (Solanum lycopersicum var. cerasiforme and var. Saint-Pierre) and wild (S. pimpinellifolium and S. peruvianum) tomatoes and tobacco (Nicotiana tabacum) were analysed by immunolabelling, oligosaccharide mass profiling and GC-MS analyses. KEY RESULTS: Pollen tubes from all the species were labelled with the mAb CCRC-M1, a monoclonal antibody that recognizes epitopes associated with fucosylated XyG motifs. Analyses of the cell wall did not highlight major structural differences between previously studied N. alata and N. tabacum XyG. In contrast, XyG of tomato pollen tubes contained fucosylated and arabinosylated motifs. The highest levels of fucosylated XyG were found in pollen tubes from the wild species. CONCLUSIONS: The results clearly indicate that the male gametophyte (pollen tube) and the sporophyte have structurally different XyG. This suggests that fucosylated XyG may have an important role in the tip growth of pollen tubes, and that they must have a specific set of functional XyG fucosyltransferases, which are yet to be characterized.


Asunto(s)
Glucanos/metabolismo , Nicotiana/metabolismo , Solanum lycopersicum/metabolismo , Solanum/metabolismo , Xilanos/metabolismo , Arabinosa/metabolismo , Fucosiltransferasas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Inmunohistoquímica , Solanum lycopersicum/enzimología , Oligosacáridos/química , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Solanum/enzimología , Nicotiana/enzimología
3.
Plant Physiol ; 154(3): 1128-42, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20841452

RESUMEN

It has been recently demonstrated, utilizing interspecific introgression lines of tomato, generated from the cross between Solanum lycopersicum and the wild species Solanum pennellii, that the efficiency of photosynthate partitioning exerts a considerable influence on the metabolic composition of tomato fruit pericarp. In order to further evaluate the influence of source-sink interaction, metabolite composition was determined by gas chromatography-mass spectrometry in a different population. For this purpose, we used 23 introgression lines resulting from an interspecific cross between S. lycopersicum and the wild species Solanum chmielewskii under high (unpruned trusses) and low (trusses pruned to one fruit) fruit load conditions. Following this strategy, we were able to contrast the metabolite composition of fruits from plants cultivated at both fruit loads as well as to compare the network behavior of primary metabolism in the introgression line population. The study revealed that while a greater number of metabolic quantitative trait loci were observed under high fruit load (240) than under low fruit load (128) cultivations, the levels of metabolites were more highly correlated under low fruit load cultivation. Finally, an analysis of genotype × fruit load interactions indicated a greater influence of development and cultivation than genotype on fruit composition. Comparison with previously documented transcript profiles from a subset of these lines revealed that changes in metabolite levels did not correlate with changes in the levels of genes associated with their metabolism. These findings are discussed in the context of our current understanding of the genetic and environmental influence on metabolic source-sink interactions in tomato, with particular emphasis given to fruit amino acid content.


Asunto(s)
Frutas/química , Metaboloma , Solanum/química , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo , Solanum/genética
4.
Plant Cell ; 21(1): 301-17, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19155349

RESUMEN

In the wild tomato Solanum habrochaites, the Sst2 locus on chromosome 8 is responsible for the biosynthesis of several class II sesquiterpene olefins by glandular trichomes. Analysis of a trichome-specific EST collection from S. habrochaites revealed two candidate genes for the synthesis of Sst2-associated sesquiterpenes. zFPS encodes a protein with homology to Z-isoprenyl pyrophosphate synthases and SBS (for Santalene and Bergamotene Synthase) encodes a terpene synthase with homology to kaurene synthases. Both genes were found to cosegregate with the Sst2 locus. Recombinant zFPS protein catalyzed the synthesis of Z,Z-FPP from isopentenylpyrophosphate (IPP) and dimethylallylpyrophosphate (DMAPP), while coincubation of zFPS and SBS with the same substrates yielded a mixture of olefins identical to the Sst2-associated sesquiterpenes, including (+)-alpha-santalene, (+)-endo-beta-bergamotene, and (-)-endo-alpha-bergamotene. In addition, headspace analysis of tobacco (Nicotiana sylvestris) plants expressing zFPS and SBS in glandular trichomes afforded the same mix of sesquiterpenes. Each of these proteins contains a putative plastid targeting sequence that mediates transport of a fused green fluorescent protein to the chloroplasts, suggesting that the biosynthesis of these sesquiterpenes uses IPP and DMAPP from the plastidic DXP pathway. These results provide novel insights into sesquiterpene biosynthesis and have general implications concerning sesquiterpene engineering in plants.


Asunto(s)
Proteínas de Plantas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/metabolismo , Solanum/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Mapeo Cromosómico , Clonación Molecular , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Solanum/genética , Nicotiana/metabolismo
5.
J Agric Food Chem ; 54(17): 6159-65, 2006 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-16910702

RESUMEN

We present a technique for easy, rapid analysis of both total and reduced forms of vitamin C in fruits using microplates and a plate reader. This technique has been compared with a spectrofluorometric technique classically used for assaying vitamin C in fresh tomato. We have applied these methods to a population of 118 tomato mutant lines and controls in search of variability for this trait. Six lines, identified as having high vitamin C levels, and four lines having low vitamin C levels have been chosen for further study. The vitamin C levels have been compared with sugar concentration, dry matter content, fruit weight, titratable acidity, and firmness. The correlations that often exist in tomato varieties between sugar and vitamin C content (positive correlation) or fruit weight and vitamin C content (negative correlation) can be uncoupled in the lines selected for further analysis.


Asunto(s)
Ácido Ascórbico/análisis , Frutas/química , Mutagénesis , Solanum lycopersicum/genética , Carbohidratos/análisis , Compuestos Férricos/química , Compuestos Ferrosos/química , Solanum lycopersicum/química , Oxidación-Reducción , Fenotipo , Extractos Vegetales/química , Especificidad de la Especie , Espectrometría de Fluorescencia , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA