Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chim Acta ; 1278: 341716, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37709459

RESUMEN

Cannabis sativa has long been harvested for industrial applications related to its fibers. Industrial hemp cultivars, a botanical class of Cannabis sativa with a low expression of intoxicating Δ9-tetrahydrocannabinol (Δ9-THC) have been selected for these purposes and scarcely investigated in terms of their content in bioactive compounds. Following the global relaxation in the market of industrial hemp-derived products, research in industrial hemp for pharmaceutical and nutraceutical purposes has surged. In this context, metabolomics-based approaches have proven to fulfill the aim of obtaining comprehensive information on the phytocompound profile of cannabis samples, going beyond the targeted evaluation of the major phytocannabinoids. In the present paper, an HRMS-based metabolomics study was addressed to seven distinct industrial hemp cultivars grown in four experimental fields in Northern, Southern, and Insular Italy. Since the role of minor phytocannabinoids as well as other phytocompounds was found to be critical in discriminating cannabis chemovars and in determining its biological activities, a comprehensive characterization of phytocannabinoids, flavonoids, and phenolic acids was carried out by LC-HRMS and a dedicated data processing workflow following the guidelines of the metabolomics Quality Assurance and Quality Control Consortium. A total of 54 phytocannabinoids, 134 flavonoids, and 77 phenolic acids were annotated, and their role in distinguishing hemp samples based on the geographical field location and cultivar was evaluated by ANOVA-simultaneous component analysis. Finally, a low-level fused model demonstrated the key role of untargeted cannabinomics extended to lesser-studied phytocompound classes for the discrimination of hemp samples.


Asunto(s)
Cannabis , Industrias , Suplementos Dietéticos , Flavonoides
2.
Artículo en Inglés | MEDLINE | ID: mdl-36965450

RESUMEN

The evaluation of the chiral composition of phytocannabinoids in the cannabis plant is particularly important as the pharmacological effects of the (+) and (-) enantiomers of these compounds are completely different. Chromatographic attempts to assess the presence of the minor (+) enantiomers of the main phytocannabinoids, cannabidiolic acid (CBDA) and trans-Δ9-tetrahydrocannabinolic acid (trans-Δ9-THCA), were carried out on heated plant extracts for the determination of the corresponding decarboxylated species, cannabidiol (CBD) and trans-Δ9-tetrahydrocannabinol (trans-Δ9-THC), respectively. This process produces an altered phytocannabinoid composition with several new and unknown decomposition products. The present work reports for the first time the stereoselective synthesis of the pure (+) enantiomers of the main phytocannabinoids, trans-CBDA, trans-Δ9-THCA, trans-CBD and trans-Δ9-THC, and the development and optimization of an achiral-chiral liquid chromatography method coupled to UV and high-resolution mass spectrometry detection in reversed phase conditions (RP-HPLC-UV-HRMS) for the isolation of the single compounds and evaluation of their actual enantiomeric composition in plant. The isolation of the peaks with the achiral stationary phase ensured the absence of interferences that could potentially co-elute with the analytes of interest in the chiral analysis. The method applied to the Italian medicinal cannabis variety FM2 revealed no trace of the (+) enantiomers for all phytocannabinoids under investigation before and after decarboxylation, thus suggesting that the extraction procedure does not lead to an inversion of configuration.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Marihuana Medicinal , Dronabinol/análisis , Cannabinoides/análisis , Cannabis/química , Cannabidiol/análisis
3.
Anal Chem ; 94(38): 13117-13125, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36121000

RESUMEN

The evaluation of double bond positions in fatty acyl chains has always been of great concern given their significance in the chemical and biochemical role of lipids. Despite being the foremost technique for lipidomics, it is difficult in practice to obtain identification beyond the fatty acyl level by the sole high-resolution mass spectrometry. Paternò-Büchi reactions of fatty acids (FAs) with ketones have been successfully proposed for pinpointing double bonds in FAs in combination with the collision-induced fragmentation technique. In the present paper, an aza-Paternò-Büchi (aPB) reaction of lipids with 6-azauracil (6-AU) was proposed for the first time for the determination of carbon-carbon double bonds in fatty acyl chains using higher collisional dissociation in the negative ion mode. The method was optimized using free FA and phospholipid analytical standards and compared to the standard Paternò-Büchi reaction with acetone. The introduction of the 6-AU moiety allowed enhancing the ionization efficiency of the FA precursor and diagnostic product ions, thanks to the presence of ionizable sites on the derivatizing agent. Moreover, the aPB derivatization allowed the obtention of deprotonated ions of phosphatidylcholines, thanks to an intramolecular methyl transfer from the phosphocholine polar heads during ionization. The workflow was finally applied for pinpointing carbon-carbon double bonds in 77 polar lipids from an yeast (Saccharomyces cerevisiae) extract.


Asunto(s)
Acetona , Carbono , Acetona/química , Carbono/química , Ácidos Grasos , Iones , Fosfatidilcolinas , Fosfolípidos/química , Fosforilcolina , Extractos Vegetales
4.
Phytochem Anal ; 33(4): 507-516, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35064611

RESUMEN

INTRODUCTION: Blueberries are known for their very high content of biologically active phenolic compounds; nonetheless, differently from the North American and European species of blueberries, Neotropical blueberries have not been extensively studied yet. OBJECTIVES: In the present paper, the phenolic composition of Vaccinium floribundum Kunth, which is endemic to the Andean regions and grows 1,600 to 4,500 meters above sea level, was investigated by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). Native and fermented berries were compared in terms of phenolic composition as well as antioxidant activity, total phenolic content, and total anthocyanin content. MATERIALS AND METHODS: V. floribundum native and fermented berries were extracted and analyzed by UHPLC-HRMS. The acquired datasets were processed by Compound Discoverer 3.1 using a dedicated data analysis workflow that was specifically set up for phenolic compound identification. RESULTS: In total, 309 compounds were tentatively identified, including anthocyanins, flavonoids, phenolic acids, and proanthocyanidins. The molecular transformations of phenolic compounds during fermentation were comprehensively investigated for the first time, and by a customized data processing workflow, 13 quinones and quinone methides were tentatively identified in the fermented samples. Compared to other species of the genus Vaccinium, a peculiar phenolic profile is observed, with low abundance of highly methylated compounds. CONCLUSION: Andean berries are a rich source of a wide variety of phenolic compounds. Untargeted MS analyses coupled to a dedicated data processing workflow allowed expanding the current knowledge on these berries, improving our understanding of the fate of phenolic compounds after fermentation.


Asunto(s)
Vaccinium , Antocianinas/análisis , Antioxidantes/análisis , Cromatografía Líquida de Alta Presión , Biología Computacional , Frutas/química , Espectrometría de Masas , Fenoles/análisis , Extractos Vegetales/química , Vaccinium/química
5.
Molecules ; 26(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34771162

RESUMEN

This work describes an untargeted analytical approach for the screening, identification, and characterization of the trans-epithelial transport of green tea (Camellia sinensis) catechin extracts with in vitro inhibitory effect against the SARS-CoV-2 papain-like protease (PLpro) activity. After specific catechin extraction, a chromatographic separation obtained six fractions were carried out. The fractions were assessed in vitro against the PLpro target. Fraction 5 showed the highest inhibitory activity against the SARS-CoV-2 PLpro (IC50 of 0.125 µg mL-1). The untargeted characterization revealed that (-)-epicatechin-3-gallate (ECG) was the most abundant compound in the fraction and the primary molecule absorbed by differentiated Caco-2 cells. Results indicated that fraction 5 was approximately 10 times more active than ECG (IC50 value equal to 11.62 ± 0.47 µg mL-1) to inhibit the PLpro target. Overall, our findings highlight the synergistic effects of the various components of the crude extract compared to isolated ECG.


Asunto(s)
Catequina/farmacología , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Té/metabolismo , Antivirales/química , COVID-19/metabolismo , Células CACO-2 , Camellia sinensis/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Proteasas Similares a la Papaína de Coronavirus/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Humanos , Espectrometría de Masas/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Té/química , Té/fisiología , Tratamiento Farmacológico de COVID-19
6.
J Chromatogr A ; 1651: 462304, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34118531

RESUMEN

Hemp and cannabis industry is undergoing a renewed interest due to legalization of marijuana (a topic that all countries are discussing, especially in recent years) and the growing importance of therapeutic properties of cannabinoids. Together with an increment in the production of hemp and recreational cannabis, there has been an increasing demand for accurate potency testing of products (i.e. quantification of main cannabinoids present in the plant in terms of weight percentage) prior commercialization. This translates in an urgent need of reliable analytical methods to characterize cannabis and hemp samples. Cannabis and hemp preparations are commercialized under various forms (e.g., flowers, oils, candies or even baked goods) usually containing a large number of often very similar compounds making their separation very challenging. Strictly connected to this, another emerging topic concerns the need for the developing of large scale separation techniques for the purification of cannabinoids from complex matrices and for the preparation of analytical-grade standards (including the chiral ones). This paper reviews the most recent achievements in both these aspects. Cutting-edge applications and novel opportunities in potency testing by high performance liquid chromatography (HPLC) with UV detection (which is becoming the golden standard, according to several pharmacopeias, for this kind of measurements) are discussed. The focus has been given to the very important topic of enantio-discrimination of chiral cannabinoids, for which supercritical fluid chromatography (SFC) appears to be particularly suitable. The last part of the work covers the purification of cannabinoids through preparative chromatography. In this regard, particular attention has been given to the most innovative multi-column techniques allowing for the continuous purification of target molecules. The most recent advancements and future challenges in this field are discussed.


Asunto(s)
Cannabinoides/análisis , Técnicas de Química Analítica/métodos , Cromatografía Líquida de Alta Presión , Cromatografía con Fluido Supercrítico , Cannabis/química , Técnicas de Química Analítica/instrumentación , Flores/química , Extractos Vegetales/química
7.
Molecules ; 25(12)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545546

RESUMEN

Chestnut seeds are used for fresh consumption and for the industrial preparation of derivatives, such as chestnut flour. During industrial processing, large amounts of by-products are generally produced, such as leaves, flowers, shells and burs. In the present study, chestnut shells were extracted by boiling water in order to obtain polyphenol-rich extracts. Moreover, for the removal or non-phenolic compounds, a separation by preparative reverse phase chromatography in ten fractions was carried out. The richest fractions in terms of phenolic content were characterized by means of untargeted high-resolution mass spectrometric analysis together with a dedicated and customized data processing workflow. A total of 243 flavonoids, phenolic acids, proanthocyanidins and ellagitannins were tentatively identified in the five richest fractions. Due its high phenolic content (450.03 µg GAE per mg of fraction), one tumor cell line (DU 145) and one normal prostate epithelial cell line (PNT2) were exposed to increasing concentration of fraction 3 dry extract for 24, 48 and 72 h. Moreover, for DU 145 cell lines, increase of apoptotic cells and perturbation of cell cycle was demonstrated for the same extract. Those outcomes suggest that chestnut industrial by-products could be potentially employed as a source of bioresources.


Asunto(s)
Fagaceae/química , Nueces/química , Extractos Vegetales/farmacología , Antioxidantes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Flavonoides/química , Humanos , Masculino , Espectrometría de Masas , Fenoles/química , Extractos Vegetales/química , Polifenoles/química , Próstata/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Semillas/química
8.
Molecules ; 24(19)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597364

RESUMEN

Asparagus waste represents products of great interest since many compounds with high biological value are located in the lower portion of the spears. The extraction of bioactive compounds from asparagus by-products is therefore crucial for the purpose of adding value to these by-products. In this paper, bioactive peptides from asparagus waste were extracted, digested, purified and identified. In particular, Alcalase® was chosen as the enzyme to use to obtain protein hydrolysate due to its low cost and, consequently, the possibility of implementing the method on a large scale. In order to simplify the peptide extract to reach better identification, the hydrolysate was fractionated by reversed-phase chromatography in 10 fractions. Two tests were carried out for antioxidant activity (ABTS-DPPH) and one for antihypertensive activity (ACE). Fractions with a higher bioactivity score were identified by peptidomics technologies and screened for bioactivity with the use of bioinformatics. For ACE-inhibitor activity, two peptides were synthetized, PDWFLLL and ASQSIWLPGWL, which provided an EC50 value of 1.76 µmol L-1 and 4.02 µmol L-1, respectively. For the antioxidant activity, by DPPH assay, MLLFPM exhibited the lowest EC50 value at 4.14 µmol L-1, followed by FIARNFLLGW and FAPVPFDF with EC50 values of 6.76 µmol L-1 and 10.01 µmol L-1, respectively. A validation of the five identified peptides was also carried out. The obtained results showed that peptides obtained from asparagus by-products are of interest for their biological activity and are suitable for being used as functional ingredients.


Asunto(s)
Antihipertensivos/química , Antioxidantes/química , Asparagus/química , Péptidos/química , Extractos Vegetales/química , Proteómica , Secuencia de Aminoácidos , Antihipertensivos/aislamiento & purificación , Antihipertensivos/farmacología , Antioxidantes/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Proteínas de Plantas/química , Proteómica/métodos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA