Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Chem ; 9: 707876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249874

RESUMEN

Phototherapies, in the form of photodynamic therapy (PDT) and photothermal therapy (PTT), are very promising treatment modalities for cancer since they provide locality and turn-on mechanism for toxicity, both of which are critical in reducing off-site toxicity. Irradiation of photosensitive agents demonstrated successful therapeutic outcomes; however, each approach has its limitations and needs to be improved for clinical success. The combination of PTT and PDT may work in a synergistic way to overcome the limitations of each method and indeed improve the treatment efficacy. The development of single photosensitive agents capable of inducing both PDT and PTT is, therefore, extremely advantageous and highly desired. Cyanine dyes are shown to have such potential, hence have been very popular in the recent years. Luminescence of cyanine dyes renders them as phototheranostic molecules, reporting the localization of the photosensitive agent prior to irradiation to induce phototoxicity, hence allowing image-guided phototherapy. In this review, we mainly focus on the cyanine dye-based phototherapy of different cancer cells, concentrating on the advancements achieved in the last ten years.

2.
J Photochem Photobiol B ; 217: 112171, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33711563

RESUMEN

Dual phototherapy agents have attracted great interest in recent years as they offer enhanced cytotoxicity on cancer cells due to the synergistic effect of photodynamic and photothermal therapies (PDT/PTT). In this study, we demonstrate a brominated hemicyanine (HC-1), which is previously shown as mitochondria targeting PDT agent, can also serve as an effective photosensitizer for PTT for the first time under a single (640 nm or 808 nm) and dual laser (640 nm + 808 nm) irradiation. Generation of reactive oxygen species and photothermal conversion as a function of irradiation wavelength and power were studied. Both single wavelength irradiations caused significant phototoxicity in colon and cervical cancer cells after 5 min of irradiation. However, co-irradiation provided near-complete elimination of cancer cells due to synergistic action. This work introduces an easily accessible small molecule-based synergistic phototherapy agent, which holds a great promise towards the realization of local, rapid and highly efficient treatment modalities against cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Carbocianinas/farmacología , Rayos Láser , Fármacos Fotosensibilizantes/farmacología , Apoptosis/efectos de la radiación , Carbocianinas/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Citometría de Flujo , Humanos , Neoplasias/patología , Neoplasias/terapia , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Fototerapia , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA