Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Sci Technol ; 88(4): 975-990, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37651333

RESUMEN

Environmental factors, such as climate change and land use changes, affect water quality drastically. To consider these, various predictive models, both process-based and data-driven, have been used. However, each model has distinct limitations. In this study, a hybrid model combining the soil and water assessment tool and the reverse time attention mechanism (SWAT-RETAIN) was proposed for predicting daily streamflow and total phosphorus (TP) load of a watershed. SWAT-RETAIN was applied to Hwangryong River, South Korea. The hybrid model uses the SWAT output as input data for the RETAIN. Spatial, meteorological, and hydrological data were collected to develop the SWAT to generate high temporal resolution data. RETAIN facilitated effective simultaneous prediction. The SWAT-RETAIN exhibited high accuracy in predicting streamflow (Nash-Sutcliffe efficiency (NSE): 0.45, root mean square error (RMSE): 27.74, percent bias (PBIAS): 22.63 for test sets), and TP load (NSE: 0.50, RMSE: 423.93, PBIAS: 22.09 for test sets). This result was evident in the performance evaluation using flow duration and load duration curves. The SWAT-RETAIN provides enhanced temporal resolution and performance, enabling the simultaneous prediction of multiple variables. It can be applied to predict various water quality variables in larger watersheds.


Asunto(s)
Cambio Climático , Hidrología , Meteorología , Fósforo , República de Corea
2.
Water Res ; 126: 319-328, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28965034

RESUMEN

Understanding harmful algal blooms is imperative to protect aquatic ecosystems and human health. This study describes the spatial and temporal distributions of cyanobacterial blooms to identify the relations between blooms and environmental factors in the Baekje Reservoir. Two-year cyanobacterial cell data at one fixed station and four remotely sensed distributions of phycocyanin (PC) concentrations based on hyperspectral images (HSIs) were used to describe the relation between the spatial and temporal variations in the blooms and the affecting factors. An artificial neural network model and a three-dimensional hydrodynamic model were implemented to estimate the PC concentrations using remotely sensed HSIs and simulate the hydrodynamics, respectively. The statistical test results showed that the variations in the cyanobacterial biomass depended significantly on variations in the water temperature (slope = 0.13, p-value < 0.01), total nitrogen (slope = -0.487, p-value < 0.01), and total phosphorus (slope = 20.7, p-value < 0.05), whereas the variation in the biomass was moderately dependent on the variation in the outflow (slope = -0.0097, p-value = 0.065). Water temperature was the main factor affecting variations in the PC concentrations for the three months from August to October and was significantly different for the three months (p-value < 0.01). Hydrodynamic parameters also had a partial effect on the variations in the PC concentrations in those three months. Overall, this study helps to describe spatial and temporal variations in cyanobacterial blooms and identify the factors affecting the variation in the blooms. This study may play an important role as a basis for developing strategies to reduce bloom frequency and severity.


Asunto(s)
Cianobacterias , Ecosistema , Eutrofización , Agua Dulce/química , Tecnología de Sensores Remotos , Biomasa , Monitoreo del Ambiente/métodos , Floraciones de Algas Nocivas , Humanos , Redes Neurales de la Computación , Nitrógeno/análisis , Fósforo/análisis , Ficocianina , República de Corea , Temperatura
3.
Environ Sci Technol ; 49(6): 3392-400, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25679045

RESUMEN

Cyanobacterial blooms in western Lake Erie have recently garnered widespread attention. Current evidence indicates that a major source of the nutrients that fuel these blooms is the Maumee River. We applied a seasonal trend decomposition technique to examine long-term and seasonal changes in Maumee River discharge and nutrient concentrations and loads. Our results indicate similar long-term increases in both regional precipitation and Maumee River discharge (1975-2013), although changes in the seasonal cycles are less pronounced. Total and dissolved phosphorus concentrations declined from the 1970s into the 1990s; since then, total phosphorus concentrations have been relatively stable, while dissolved phosphorus concentrations have increased. However, both total and dissolved phosphorus loads have increased since the 1990s because of the Maumee River discharge increases. Total nitrogen and nitrate concentrations and loads exhibited patterns that were almost the reverse of those of phosphorus, with increases into the 1990s and decreases since then. Seasonal changes in concentrations and loads were also apparent with increases since approximately 1990 in March phosphorus concentrations and loads. These documented changes in phosphorus, nitrogen, and suspended solids likely reflect changing land-use practices. Knowledge of these patterns should facilitate efforts to better manage ongoing eutrophication problems in western Lake Erie.


Asunto(s)
Lagos/análisis , Nitrógeno/análisis , Fósforo/análisis , Clima , Monitoreo del Ambiente/métodos , Eutrofización , Great Lakes Region , Nitratos/análisis , Ríos , Estaciones del Año , Contaminación del Agua/análisis
4.
Environ Sci Technol ; 47(8): 3768-73, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23496057

RESUMEN

Correlations between chlorophyll a and total phosphorus in freshwater ecosystems were first documented in the 1960s and have been used since then to infer phosphorus limitation, build simple models, and develop management targets. Often these correlations are considered indicative of a cause-effect relationship. However, many scientists regard the use of these associations for modeling and inference to be misleading due to their potentially spurious nature. Using data from Saginaw Bay, Lake Huron, we examine the relationship among chlorophyll a, total phosphorus, and algal biomass measurements. We apply graphical models and recently developed "structure learning" principles that use conditional dependencies to help identify causal relationships among observational data. The spurious relationship suspected by some is not supported by our data, whereas a direct relationship between chlorophyll a and total phosphorus is always supported, and an additional indirect relationship with an algal biomass intermediary is plausible under some circumstances. Thus, we conclude that these correlations are useful for simple model building but encourage the use of modern statistical methods to avoid common model-assumption violations.


Asunto(s)
Clorofila/análisis , Monitoreo del Ambiente , Fósforo/análisis , Biomasa , Clorofila A , Eucariontes/metabolismo , Lagos/química
5.
Environ Sci Technol ; 45(17): 7226-31, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21812427

RESUMEN

Dreissenid mussels were first documented in the Laurentian Great Lakes in the late 1980s. Zebra mussels (Dreissena polymorpha) spread quickly into shallow, hard-substrate areas; quagga mussels (Dreissena rostriformis bugensis) spread more slowly and are currently colonizing deep, offshore areas. These mussels occur at high densities, filter large water volumes while feeding on suspended materials, and deposit particulate waste on the lake bottom. This filtering activity has been hypothesized to sequester tributary phosphorus in nearshore regions reducing offshore primary productivity. We used a mass balance model to estimate the phosphorus sedimentation rate in Saginaw Bay, a shallow embayment of Lake Huron, before and after the mussel invasion. Our results indicate that the proportion of tributary phosphorus retained in Saginaw Bay increased from approximately 46-70% when dreissenids appeared, reducing phosphorus export to the main body of Lake Huron. The combined effects of increased phosphorus retention and decreased phosphorus loading have caused an approximate 60% decrease in phosphorus export from Saginaw Bay to Lake Huron. Our results support the hypothesis that the ongoing decline of preyfish and secondary producers including diporeia (Diporeia spp.) in Lake Huron is a bottom-up phenomenon associated with decreased phosphorus availability in the offshore to support primary production.


Asunto(s)
Bivalvos/metabolismo , Cloruros/análisis , Lagos/química , Fósforo/análisis , Animales , Bahías/química , Canadá , Ecosistema , Cadena Alimentaria , Michigan , Contaminantes del Agua/análisis
6.
Water Res ; 44(10): 3270-82, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20382406

RESUMEN

We propose the use of Bayesian hierarchical/multilevel ratio approach to estimate the annual riverine phosphorus loads in the Saginaw River, Michigan, from 1968 to 2008. The ratio estimator is known to be an unbiased, precise approach for differing flow-concentration relationships and sampling schemes. A Bayesian model can explicitly address the uncertainty in prediction by using a posterior predictive distribution, while in comparison, a Bayesian hierarchical technique can overcome the limitation of interpreting the estimated annual loads inferred from small sample sizes by borrowing strength from the underlying population shared by the years of interest. Thus, by combining the ratio estimator with the Bayesian hierarchical modeling framework, long-term loads estimation can be addressed with explicit quantification of uncertainty. Our study results indicate a slight decrease in total phosphorus load early in the series. The estimated ratio parameter, which can be interpreted as flow-weighted concentration, shows a clearer decrease, damping the noise that yearly flow variation adds to the load. Despite the reductions, it is not likely that Saginaw Bay meets with its target phosphorus load, 440 tonnes/yr. Throughout the decades, the probabilities of the Saginaw Bay not complying with the target load are estimated as 1.00, 0.50, 0.57 and 0.36 in 1977, 1987, 1997, and 2007, respectively. We show that the Bayesian hierarchical model results in reasonable goodness-of-fits to the observations whether or not individual loads are aggregated. Also, this modeling approach can substantially reduce uncertainties associated with small sample sizes both in the estimated parameters and loads.


Asunto(s)
Teorema de Bayes , Monitoreo del Ambiente/métodos , Fósforo/análisis , Michigan , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA