Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Free Radic Biol Med ; 194: 199-208, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470319

RESUMEN

BACKGROUND: The maturation of the hypothalamic-pituitary-gonadal (HPG) axis is crucial for the establishment of reproductive function. In female mice, neuronal nitric oxide synthase (nNOS) activity appears to be key for the first postnatal activation of the neural network promoting the release of gonadotropin-releasing hormone (GnRH), i.e. minipuberty. However, in males, the profile of minipuberty as well as the role of nNOS-expressing neurons remain unexplored. METHODS: nNOS-deficient and wild-type mice were studied during postnatal development. The expression of androgen (AR) and estrogen receptor alpha (ERα) as well as nNOS phosphorylation were evaluated by immunohistochemistry in nNOS neurons in the median preoptic nucleus (MePO), where most GnRH neuronal cell bodies reside, and the hormonal profile of nNOS-deficient male mice was assessed using previously established radioimmunoassay and ELISA methods. Gonadectomy and pharmacological manipulation of ERα were used to elucidate the mechanism of minipubertal nNOS activation and the maturation of the HPG axis. RESULTS: In male mice, minipubertal FSH release occurred at P23, preceding the LH surge at P30, when balanopreputial separation occurs. Progesterone and testosterone remained low during minipuberty, increasing around puberty, whereas estrogen levels were high throughout postnatal development. nNOS neurons showed a sharp increase in Ser1412 phosphorylation of nNOS at P23, a phenomenon that occurred even in the absence of the gonads. In male mice, nNOS neurons did not appear to express AR, but abundantly expressed ERα throughout postnatal development. Selective pharmacological blockade of ERα during the infantile period blunted Ser1412 phosphorylation of nNOS at P23. CONCLUSIONS: Our results show that the timing of minipuberty differs in male mice when compared to females, but as in the latter, nNOS activity in the preoptic region plays a role in this process. Additionally, akin to male non-human primates, the profile of minipuberty in male mice is shaped by sex-independent mechanisms, and possibly involves extragonadal estrogen sources.


Asunto(s)
Receptor alfa de Estrógeno , Piridinolcarbamato , Femenino , Ratones , Masculino , Animales , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptor alfa de Estrógeno/genética , Hormona Liberadora de Gonadotropina/análisis , Hormona Liberadora de Gonadotropina/metabolismo , Estrógenos/metabolismo , Gónadas/química , Gónadas/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo
2.
Mol Cell Endocrinol ; 532: 111302, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33964320

RESUMEN

Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate. In this review we challenge the view of kisspeptin as an absolute "monarch", and instead present the idea of a Kisspeptin-nNOS-GnRH or "KiNG" network that is responsible for generating the "GnRH pulse" and "GnRH surge". In particular, the neuromodulator nitric oxide (NO) has opposite effects to kisspeptin on GnRH secretion in many respects, acting as the Yin to kisspeptin's Yang and creating a dynamic system in which kisspeptin provides the "ON" signal, promoting GnRH release, while NO mediates the "OFF" signal, acting as a tonic brake on GnRH secretion. This interplay between an activator and an inhibitor, which is in turn fine-tuned by the gonadal steroid environment, thus leads to the generation of GnRH pulses and surges and is crucial for the proper development and function of the reproductive axis.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animales , Humanos
3.
J Comp Neurol ; 525(15): 3177-3189, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28577305

RESUMEN

Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFPVglut2 , EYFPVgat , and GFPGad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes.


Asunto(s)
Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Neuronas/citología , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Hipotálamo/citología , Inmunohistoquímica , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
4.
Nat Rev Endocrinol ; 13(9): 521-535, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28621341

RESUMEN

The chemical signalling molecule nitric oxide (NO), which freely diffuses through aqueous and lipid environments, subserves an array of functions in the mammalian central nervous system, such as the regulation of synaptic plasticity, blood flow and neurohormone secretion. In this Review, we consider the cellular and molecular mechanisms by which NO evokes short-term and long-term changes in neuronal activity. We also highlight recent studies showing that discrete populations of neurons that synthesize NO in the hypothalamus constitute integrative systems that support life by relaying metabolic and gonadal signals to the neuroendocrine brain, and thus gate the onset of puberty and adult fertility. The putative involvement and therapeutic potential of NO in the pathophysiology of brain diseases, for which hormonal imbalances during postnatal development could be risk factors, is also discussed.


Asunto(s)
Hipotálamo/fisiología , Óxido Nítrico/fisiología , Animales , Encéfalo/fisiología , Sistema Nervioso Central/fisiología , Femenino , Fertilidad/fisiología , Regulación de la Expresión Génica , Gónadas , Humanos , Sistema Hipotálamo-Hipofisario , Masculino , Plasticidad Neuronal , Neuronas/fisiología , Sistemas Neurosecretores/fisiología , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo I/genética , Ovario/fisiología , Pubertad/fisiología , Reproducción/fisiología , Maduración Sexual , Transducción de Señal/fisiología
5.
Nat Neurosci ; 19(6): 835-44, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27135215

RESUMEN

A sparse population of a few hundred primarily hypothalamic neurons forms the hub of a complex neuroglial network that controls reproduction in mammals by secreting the 'master molecule' gonadotropin-releasing hormone (GnRH). Timely postnatal changes in GnRH expression are essential for puberty and adult fertility. Here we report that a multilayered microRNA-operated switch with built-in feedback governs increased GnRH expression during the infantile-to-juvenile transition and that impairing microRNA synthesis in GnRH neurons leads to hypogonadotropic hypogonadism and infertility in mice. Two essential components of this switch, miR-200 and miR-155, respectively regulate Zeb1, a repressor of Gnrh transcriptional activators and Gnrh itself, and Cebpb, a nitric oxide-mediated repressor of Gnrh that acts both directly and through Zeb1, in GnRH neurons. This alteration in the delicate balance between inductive and repressive signals induces the normal GnRH-fuelled run-up to correct puberty initiation, and interfering with this process disrupts the neuroendocrine control of reproduction.


Asunto(s)
Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , MicroARNs/metabolismo , Reproducción/fisiología , Maduración Sexual/fisiología , Envejecimiento , Animales , Fertilidad/fisiología , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA