Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 20440, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235245

RESUMEN

Leishmaniasis, a major neglected tropical disease, affects millions of individuals worldwide. Among the various clinical forms, visceral leishmaniasis (VL) is the deadliest. Current antileishmanial drugs exhibit toxicity- and resistance-related issues. Therefore, advanced chemotherapeutic alternatives are in demand, and currently, plant sources are considered preferable choices. Our previous report has shown that the chloroform extract of Corchorus capsularis L. leaves exhibits a significant effect against Leishmania donovani promastigotes. In the current study, bioassay-guided fractionation results for Corchorus capsularis L. leaf-derived ß-sitosterol (ß-sitosterolCCL) were observed by spectroscopic analysis (FTIR, 1H NMR, 13C NMR and GC-MS). The inhibitory efficacy of this ß-sitosterolCCL against L. donovani promastigotes was measured (IC50 = 17.7 ± 0.43 µg/ml). ß-SitosterolCCL significantly disrupts the redox balance via intracellular ROS production, which triggers various apoptotic events, such as structural alteration, increased storage of lipid bodies, mitochondrial membrane depolarization, externalization of phosphatidylserine and non-protein thiol depletion, in promastigotes. Additionally, the antileishmanial activity of ß-sitosterolCCL was validated by enzyme inhibition and an in silico study in which ß-sitosterolCCL was found to inhibit Leishmania donovani trypanothione reductase (LdTryR). Overall, ß-sitosterolCCL appears to be a novel inhibitor of LdTryR and might represent a successful approach for treatment of VL in the future.


Asunto(s)
Antiprotozoarios/farmacología , Corchorus/química , Leishmania donovani/enzimología , NADH NADPH Oxidorreductasas/metabolismo , Sitoesteroles/farmacología , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Sitios de Unión/efectos de los fármacos , Fraccionamiento Químico , Leishmania donovani/efectos de los fármacos , Membranas Mitocondriales , Modelos Moleculares , Simulación del Acoplamiento Molecular , NADH NADPH Oxidorreductasas/química , Extractos Vegetales/química , Hojas de la Planta/química , Conformación Proteica , Proteínas Protozoarias/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Sitoesteroles/química , Sitoesteroles/aislamiento & purificación
2.
Mol Cell Biochem ; 427(1-2): 111-122, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28013477

RESUMEN

Matrix metalloproteinases (MMPs) play a crucial role in developing different types of lung diseases, e.g., pulmonary arterial hypertension (PAH). Green tea polyphenolic catechins such as EGCG and ECG have been shown to ameliorate various types of diseases including PAH. Our present study revealed that among the four green tea catechins (EGCG, ECG, EC, and EGC), EGCG and ECG inhibit pro-/active MMP-2 activities in pulmonary artery smooth muscle cell (PASMC) culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-2 with the green tea catechins by computational methods. In silico analysis revealed a strong interaction of pro-/active MMP-2 with EGCG/ECG, and galloyl group has been observed to be responsible for this interaction. The in silico analysis corroborated our experimental observation that EGCG and ECG are active in preventing both the proMMP-2 and MMP-2 activities. Importantly, these two catechins appeared to be better inhibitors for proMMP-2 in comparison to MMP-2 as revealed by gelatin zymogram and also by molecular docking studies. In many type of cells, activation of proMMP-2 occurs via an increase in the level of MT1-MMP (MMP-14). We, therefore, determined the interactions of MT1-MMP with the green tea catechins by molecular docking analysis. The study revealed a strong interaction of MT1-MMP with EGCG/ECG, and galloyl group has been observed to be responsible for the interaction.


Asunto(s)
Catequina , Precursores Enzimáticos , Gelatinasas , Metaloproteinasa 2 de la Matriz , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas , Té/química , Animales , Catequina/química , Catequina/farmacología , Bovinos , Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Gelatinasas/antagonistas & inhibidores , Gelatinasas/química , Gelatinasas/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/química , Metaloproteinasa 2 de la Matriz/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología
3.
Biomed Pharmacother ; 84: 340-347, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27668533

RESUMEN

Green tea polyphenolic catechins have been shown to prevent various types of diseases such as pulmonary hypertension (PAH), cancer and cardiac and neurological disorders. Matrix metalloproteinases (MMPs) play an important role in the development of PAH. The present study demonstrated that among the four green tea catechins (EGCG, ECG, EC and EGC), EGCG and ECG inhibit pro-/active MMP-9 activities in pulmonary artery smooth muscle cell culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-9 with the green tea catechins by computational methods. In silico molecular docking analysis revealed a strong interaction between pro-/active MMP-9 and EGCG/ECG, and galloyl group appears to be responsible for this enhanced interaction. The molecular docking studies corroborate our experimental observation that EGCG and ECG are mainly active in preventing both the proMMP-9 and MMP-9 activities.


Asunto(s)
Catequina/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Simulación del Acoplamiento Molecular , Té/química , Animales , Sitios de Unión , Catequina/química , Bovinos , Células Cultivadas , Humanos , Ligandos , Inhibidores de la Metaloproteinasa de la Matriz/química , Polifenoles/química , Polifenoles/farmacología
4.
Cell Signal ; 16(6): 751-62, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15093616

RESUMEN

Treatment of bovine pulmonary artery endothelial cells with the calcium ionophore, A23187, stimulates the cell membrane associated protease activity, phospholipase A2 (PLA2) activity, and arachidonic acid (AA) release from the cells. Pretreatment of the cells with arachidonyl-trifluomethylketone (AACOCF3), a cPLA2 inhibitor, but not bromoenollactone (BEL), a iPLA2 inhibitor, prevents A23187 stimulated PLA2 activity and AA release without producing an appreciable alteration of the protease activity. Pretreatment of the cells with aprotinin, an ambient protease inhibitor, prevents the increase in the protease activity and cPLA2 activity in the membrane and AA release from the cells caused by both low and high doses of A23187, and also inhibits protein kinase C (PKC) activity caused by high doses of A23187. Immunoblot study of the endothelial cell membrane isolated from A23187 (10 microM)-treated cells with polyclonal PKCalpha antibody elicited an increase in the 80 kDa immunoreactive protein band along with an additional 47 kDa immunoreactive fragment. Pretreatment of the cells with aprotinin abolished the 47 kDa immunoreactive fragment in the immunoblot. Immunoblot study of the endothelial membrane with polyclonal cPLA2 antibody revealed that treatment of the cells with A23187 dose-dependently increases cPLA2 immunoreactive protein profile in the membrane. It therefore appears from the present study that treatment of the cells with a low dose of A23187 (1 microM) causes a small increase in an aprotinin-sensitive protease activity and that stimulates cPLA2 activity in the cell membrane without an involvement of PKC. By contrast, treatment of the cells with a high dose of 10 microM of A23187 causes optimum increase in the protease activity and that plays an important role in activating PKCalpha, which subsequently stimulates cPLA2 activity in the cell membrane. Although pretreatment of the cells with pertussis toxin caused ADP ribosylation of a 41 kDa protein in the cell membrane, it did not inhibit the cPLA2 activity and AA release caused by both low and high doses of A23187.


Asunto(s)
Calcimicina/farmacología , Células Endoteliales/enzimología , Fosfolipasas A/metabolismo , Proteína Quinasa C/metabolismo , Arteria Pulmonar/enzimología , Animales , Aprotinina/farmacología , Ácido Araquidónico/metabolismo , Ácidos Araquidónicos/farmacología , Señalización del Calcio/efectos de los fármacos , Bovinos , Membrana Celular/enzimología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Toxina del Pertussis/farmacología , Fosfolipasas A2 , Inhibidores de Proteasas/farmacología , Proteína Quinasa C-alfa
5.
Mol Cell Biochem ; 253(1-2): 307-12, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14619981

RESUMEN

Generation of reactive oxygen species (ROS) is a normal process in the life of aerobic organisms. Under physiological conditions, these deleterious species are mostly removed by the cellular antioxidant systems, which include antioxidant vitamins, protein and non-protein thiols, and antioxidant enzymes. Since the antioxidant reserve capacity in most tissues is rather marginal, strenuous physical exercise characterized by a remarkable increase in oxygen consumption with concomitant production of ROS presents a challenge to the antioxidant systems. An acute bout of exercise at sufficient intensity has been shown to stimulate activities of antioxidant enzymes. This could be considered as a defensive mechanism of the cell under oxidative stress. However, prolonged heavy exercise may cause a transient reduction of tissue vitamin E content and a change of glutathione redox status in various body tissues. Deficiency of antioxidant nutrients appears to hamper antioxidant systems and augment exercise-induced oxidative stress and tissue damage. Chronic exercise training seems to induce activities of antioxidant enzymes and perhaps stimulate GSH levels in body fluids. Recent research suggest that supplementation of certain antioxidant nutrients are necessary for physically active individuals.


Asunto(s)
Antioxidantes/metabolismo , Ejercicio Físico/fisiología , Oxidantes/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Humanos , Peroxidación de Lípido/fisiología , Músculo Esquelético/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Vitaminas/metabolismo
6.
Mol Cell Biochem ; 238(1-2): 163-79, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12349904

RESUMEN

A considerable number of experimental, epidemiological and clinical studies are now available which point to an important role of Mg2+ in the etiology of cardiovascular pathology. In human subjects, hypomagnesemia is often associated with an imbalance of electrolytes such as Na+, K+ and Ca2+. Abnormal dietary deficiency of Mg2+ as well as abnormalities in Mg2+ metabolism play important roles in different types of heart diseases such as ischemic heart disease, congestive heart failure, sudden cardiac death, atheroscelerosis, a number of cardiac arrhythmias and ventricular complications in diabetes mellitus. Mg2+ deficiency results in progressive vasoconstriction of the coronary vessels leading to a marked reduction in oxygen and nutrient delivery to the cardiac myocytes. Numerous experimental and clinical data have suggested that Mg2+ deficiency can induce elevation of intracellular Ca2+ concentrations, formation of oxygen radicals, proinflammatory agents and growth factors and changes in membrane perrmeability and transport processes in cardiac cells. The opposing effects of Mg2+ and Ca2+ on myocardial contractility may be due to the competition between Mg2+ and Ca2+ for the same binding sites on key myocardial contractile proteins such as troponin C, myosin and actin. Stimulants, for example, catecholamines can evoke marked Mg2+ efflux which appears to be associated with a concomitant increase in the force of contraction of the heart. It has been suggested that Mg2+ efflux may be linked to the Ca2+ signalling pathway. Depletion of Mg2+ by alcohol in cardiac cells causes an increase in intracellular Ca2+, leading to coronary artery vasospasm, arrhythmias, ischemic damage and cardiac failure. Hypomagnesemia is commonly associated with hypokalemia and occurs in patients with hypertension or myocardial infarction as well as in chronic alcoholism. The inability of the senescent myocardium to respond to ischemic stress could be due to several reasons. Mg2+ supplemented K+ cardioplegia modulates Ca2+ accumulation and is directly involved in the mechanisms leading to enhanced post ischemic functional recovery in the aged myocardium following ischemia. While many of these mechanisms remain controversial and in some cases speculative, the beneficial effects related to consequences of Mg2+ supplementation are apparent. Further research are needed for the incorporation of these findings toward the development of novel myocardial protective role of Mg2+ to reduce morbidity and mortality of patients suffering from a variety of cardiac diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Magnesio/metabolismo , Sustancias Protectoras/metabolismo , Enfermedades Cardiovasculares/genética , Humanos , Activación del Canal Iónico , Deficiencia de Magnesio , Oxidantes/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA