Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105563, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101568

RESUMEN

Intermediary metabolites and flux through various pathways have emerged as key determinants of post-translational modifications. Independently, dynamic fluctuations in their concentrations are known to drive cellular energetics in a bi-directional manner. Notably, intracellular fatty acid pools that drastically change during fed and fasted states act as precursors for both ATP production and fatty acylation of proteins. Protein fatty acylation is well regarded for its role in regulating structure and functions of diverse proteins; however, the effect of intracellular concentrations of fatty acids on protein modification is less understood. In this regard, we unequivocally demonstrate that metabolic contexts, viz. fed and fasted states, dictate the extent of global fatty acylation. Moreover, we show that presence or absence of glucose that influences cellular and mitochondrial uptake/utilization of fatty acids and affects palmitoylation and oleoylation, which is consistent with their intracellular abundance in fed and fasted states. Employing complementary approaches including click-chemistry, lipidomics, and imaging, we show the top-down control of cellular metabolic state. Importantly, our results establish the crucial role of mitochondria and retrograde signaling components like SIRT4, AMPK, and mTOR in orchestrating protein fatty acylation at a whole cell level. Specifically, pharmacogenetic perturbations that alter either mitochondrial functions and/or retrograde signaling affect protein fatty acylation. Besides illustrating the cross-talk between carbohydrate and lipid metabolism in mediating bulk post-translational modification, our findings also highlight the involvement of mitochondrial energetics.


Asunto(s)
Acilación , Ácidos Grasos , Metabolismo de los Lípidos , Procesamiento Proteico-Postraduccional , Proteínas , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Química Clic , Ayuno/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Lipidómica , Lipoilación , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/química , Proteínas/metabolismo , Sirtuinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
2.
PLoS One ; 13(4): e0196411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29709010

RESUMEN

The progress in industrialization has blessed mankind with a technologically superior lifestyle but poor management of industrial waste has in turn poisoned nature. One such chemical is carbon tetra chloride (CCl4), which is a potent environmental toxin emitted from chemical industries and its presence in the atmosphere is increasing at an alarming rate. Presence of CCl4 in human body is reported to cause liver damage through free radical mediated inflammatory processes. Kupffer cells present in the liver are potentially more sensitive to oxidative stress than hepatocytes. Kuffer cells produced tumor necrosis factor-α (TNF-α) in response to reactive oxygen species (ROS), that might further cause inflammation or apoptosis. In this study hepatoprotective capacity of antioxidant rich extract of Croton bonplandianus Baill. (CBL) was evaluated on CCl4 induced acute hepatotoxicity in murine model. Hydro-methanolic extract of C. bonplandianus leaf was used for evaluation of free radical scavenging activity. Liver cells of experimental mice were damaged using CCl4 and subsequently hepatoprotective potential of the plant extract was evaluated using series of in-vivo and in-vitro studies. In the hepatoprotective study, silymarin was used as a positive control. Antioxidant enzymes, pro-inflammatory markers, liver enzymatic and biochemical parameters were studied to evaluate hepatoprotective activity of Croton bonplandianus leaf extract. Free radical scavenging activity of CBL extract was also observed in WRL-68 cell line. The phytochemicals identified by GCMS analysis were scrutinized using in-silico molecular docking procedure. The results showed that CBL extract have potent free radical scavenging capacity. The biochemical parameters were over expressed due to CCl4 administration, which were significantly normalized by CBL extract treatment. This finding was also supported by histopathological evidences showing less hepatocellularnecrosis, inflammation and fibrosis in CBL and silymarin treated group, compared to CCl4 group. ROS generated due to H2O2 in WRL-68 cell line were normalize in the highest group (200 µg/ml) when compared with control and negative control (CCl4) group. After molecular docking analysis, it was observed that the compound α-amyrin present in the leaf extract of C. bonplandianus has better potentiality to protect hepatocellular damages than the standard drug Silymarin. The present study provided supportive evidence that CBL extract possesses potent hepatoprotective capacity by ameliorating haloalkane induced liver injury in the murine model. The antioxidant and anti-inflammatory activities also affirm the same. The synergistic effects of the phytochemicals present in CBL are to be credited for all the hepatoprotective activity claimed above.


Asunto(s)
Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Croton/química , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Tetracloruro de Carbono , Línea Celular , Eritrocitos/metabolismo , Flavonoides/química , Cromatografía de Gases y Espectrometría de Masas , Glutatión/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/química , Pruebas de Función Hepática , Masculino , Ratones , Simulación del Acoplamiento Molecular , Fenol/química , Hojas de la Planta/química , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA