Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Res ; 248: 118297, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38281560

RESUMEN

In this work, harvested mushroom substrate (HMS) has been explored for the first time through a comprehensive optimization study for the green synthesis of silver nanoparticles (AgNPs). A multiple response central composite design with three parameters: pH of the reaction mixture, temperature, and incubation period at three distinct levels was employed in the optimization study. The particle size of AgNPs, UV absorbance, and the percentage of Ag/Cl elemental ratio were considered as the response parameters. For each response variable examined the model used was found to be significant (P < 0.05). The ideal conditions were: pH 8.9, a temperature of 59.4 °C, and an incubation period of 48.5 h. The UV-visible spectra of AgNPs indicated that the absorption maxima for AgNP-3 were 414 nm, 420 for AgNPs-2, and 457 for AgNPs-1. The XRD analysis of AgNPs-3 and AgNPs-2 show a large diffraction peak at ∼38.2°, ∼44.2°, ∼64.4°, and ∼77.4°, respectively, which relate to the planes of polycrystalline face-centered cubic (fcc) silver. Additionally, the XRD result of AgNPs-1, reveals diffraction characteristics of AgCl planes (111, 200, 220, 311, 222, and 400). The TEM investigations indicated that the smallest particles were synthesized at pH 9 with average diameters of 35 ± 6 nm (AgNPs-3). The zeta potentials of the AgNPs are -36 (AgNPs-3), -28 (AgNPs-2), and -19 (AgNPs-1) mV, respectively. The distinct IR peak at 3400, 1634, and 1383 cm-1 indicated the typical vibration of phenols, proteins, and alkaloids, respectively. The AgNPs were further evaluated against gram (+) strain Bacillus subtilis (MTCC 736) and gram (-) strain Escherichia coli (MTCC 68). All of the NPs tested positive for antibacterial activity against both bacterial strains. The study makes a sustainable alternative to disposing of HMS to achieve the Sustainable Development Goals (SDGs).


Asunto(s)
Agaricales , Nanopartículas del Metal , Plata/química , Agaricales/metabolismo , Nanopartículas del Metal/química , Extractos Vegetales/química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
2.
Environ Res ; 228: 115858, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37062481

RESUMEN

Following the Fundão dam failure in Brazil, 60 million m3 of iron-rich tailings were released impacting an extensive area. After this catastrophe, a detailed characterization and monitoring of iron-rich tailings is required for agronomic and environmental purposes. This can be facilitated by using proximal sensors which have been an efficient, fast, and cost-effective tool for eco-friendly analysis of soils and sediments. This work hypothesized that portable X-ray fluorescence (pXRF) spectrometry combined with a pocket-sized (Nix™ Pro) color sensor and benchtop magnetic susceptibilimeter can produce substantial data for fast and clean characterization of iron-rich tailings. The objectives were to differentiate impacted and non-impacted areas (soils and sediments) based on proximal sensors data, and to predict attributes of agronomic and environmental importance. A total of 148 composite samples were collected on totally impacted, partially impacted, and non-impacted areas (natural soils). The samples were analyzed via pXRF to obtain the total elemental composition; via Nix™ Pro color sensor to obtain the red (R), green (G), and blue (B) parameters; and assessed for magnetic susceptibility (MS). The same samples used for analyses via the aforementioned sensors were wet-digested (USEPA 3051a method) followed by ICP-OES quantification of potentially toxic elements. Principal component analysis was performed to differentiate impacted and non-impacted areas. The pXRF data alone or combined with other sensors were used to predict soil agronomic properties and semi-total concentration of potentially toxic elements via random forest regression. For that, samples were randomly separated into modeling (70%) and validation (30%) datasets. The pXRF proved to be an efficient method for rapid and eco-friendly characterization of iron-rich tailings, allowing a clear differentiation of impacted and non-impacted areas. Also, important soil agronomic properties (clay, cation exchange capacity, soil organic carbon, pH and macronutrients availability) and semi-total concentrations of Ba, Pb, Cr, V, Cu, Co, Ni, Mn, Ti, and Li were accurately predicted (based upon the lowest RMSE and highest R2 and RPD values). Sensor data fusion (pXRF + Nix Pro + MS) slightly improved the accuracy of predictions. This work highlights iron-rich tailings from the Fundão dam failure can be in detail characterized via pXRF ex situ, providing a secure basis for complementary studies in situ aiming at identify contaminated hot spots, digital mapping of soil and properties variability, and embasing pedological, agricultural and environmental purposes.


Asunto(s)
Hierro , Contaminantes del Suelo , Hierro/análisis , Suelo/química , Brasil , Carbono/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis
3.
PLoS One ; 17(9): e0275062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137131

RESUMEN

Indian soils are inherently poor in quality due to the warm climate and erosion. Conversion of land uses like forests to croplands and faulty management practices in croplands further cause soil degradation. This study aimed to understand the extent of these impacts in a small representative part of eastern India, covering Himalayan terai and nearing alluvial plains. Soils were collected from (i) forests, (ii) croplands (under agricultural practices for more than 50-60 years) and (iii) converted lands (converted from forests to croplands or tea gardens over the past 15-20 years). Different soil quality indicators were assessed and soil quality index (SQI) was generated to integrate, scale and allot a single value per soil. Results indicated that continuous organic matter deposition and no disturbances consequence the highest presence of soil carbon pools, greater aggregation and maximum microbial dynamics in forest soils whereas high application of straight fertilizers caused the highest available nitrogen and phosphorus in cropland soils. The SQI scorebook indicated the best soil quality under forests ([Formula: see text] 0.532), followed by soils of converted land ([Formula: see text] 0.432) and cropland ([Formula: see text] 0.301). Comparison of the SQI spatial distribution with land use and land cover confirmed the outcome. Possibly practices like excessive tillage, high cropping intensity, no legume in crop rotations, cultivation of heavy feeder crops caused degraded soil quality in croplands. This study presented an example of soil quality degradation in India due to land use change and faulty management practices. Such soil degradation on a larger scale may affect future food security.


Asunto(s)
Fertilizantes , Suelo , Agricultura/métodos , Carbono/análisis , Bosques , India , Nitrógeno/análisis , Fósforo/análisis ,
4.
Sci Total Environ ; 514: 399-408, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25681776

RESUMEN

Using 108 petroleum contaminated soil samples, this pilot study proposed a new analytical approach of combining visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) and portable X-ray fluorescence spectrometry (PXRF) for rapid and improved quantification of soil petroleum contamination. Results indicated that an advanced fused model where VisNIR DRS spectra-based penalized spline regression (PSR) was used to predict total petroleum hydrocarbon followed by PXRF elemental data-based random forest regression was used to model the PSR residuals, it outperformed (R(2)=0.78, residual prediction deviation (RPD)=2.19) all other models tested, even producing better generalization than using VisNIR DRS alone (RPD's of 1.64, 1.86, and 1.96 for random forest, penalized spline regression, and partial least squares regression, respectively). Additionally, unsupervised principal component analysis using the PXRF+VisNIR DRS system qualitatively separated contaminated soils from control samples. CAPSULE: Fusion of PXRF elemental data and VisNIR derivative spectra produced an optimized model for total petroleum hydrocarbon quantification in soils.


Asunto(s)
Contaminación por Petróleo/análisis , Petróleo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente/métodos , Análisis de los Mínimos Cuadrados , Contaminación por Petróleo/estadística & datos numéricos , Análisis de Componente Principal
5.
Environ Pollut ; 190: 10-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24686115

RESUMEN

This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r(2) = 0.87, RMSE = 0.580 log10 mg kg(-1), and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r(2) = 0.65 and RMSE 0.261 log10 mg kg(-1)) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane.


Asunto(s)
Hexanos/análisis , Modelos Químicos , Petróleo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente , Hexanos/química , Análisis de los Mínimos Cuadrados , Contaminación por Petróleo , Contaminantes del Suelo/química
6.
J Environ Monit ; 14(11): 2886-92, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22986574

RESUMEN

Visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) is a rapid, non-destructive method for sensing the presence and amount of total petroleum hydrocarbon (TPH) contamination in soil. This study demonstrates the feasibility of VisNIR DRS to be used in the field to proximally sense and then map the areal extent of TPH contamination in soil. More specifically, we evaluated whether a combination of two methods, penalized spline regression and geostatistics could provide an efficient approach to assess spatial variability of soil TPH using VisNIR DRS data from soils collected from an 80 ha crude oil spill in central Louisiana, USA. Initially, a penalized spline model was calibrated to predict TPH contamination in soil by combining lab TPH values of 46 contaminated and uncontaminated soil samples and the first-derivative of VisNIR reflectance spectra of these samples. The r(2), RMSE, and bias of the calibrated penalized spline model were 0.81, 0.289 log(10) mg kg(-1), and 0.010 log(10) mg kg(-1), respectively. Subsequently, the penalized spline model was used to predict soil TPH content for 128 soil samples collected over the 80 ha study site. When assessed with a randomly chosen validation subset (n = 10) from the 128 samples, the penalized spline model performed satisfactorily (r(2) = 0.70; residual prediction deviation = 2.0). The same validation subset was used to assess point kriging interpolation after the remaining 118 predictions were used to produce an experimental semivariogram and map. The experimental semivariogram was fitted with an exponential model which revealed strong spatial dependence among soil TPH [r(2) = 0.76, nugget = 0.001 (log(10) mg kg(-1))(2), and sill 1.044 (log(10) mg kg(-1))(2)]. Kriging interpolation adequately interpolated TPH with r(2) and RMSE values of 0.88 and 0.312 log(10) mg kg(-1), respectively. Furthermore, in the kriged map, TPH distribution matched with the expected TPH variability of the study site. Since the combined use of VisNIR prediction and geostatistics was promising to identify the spatial patterns of TPH contamination in soils, future research is warranted to evaluate the approach for mapping spatial variability of petroleum contaminated soils.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación por Petróleo/análisis , Petróleo/análisis , Contaminantes del Suelo/análisis , Contaminación por Petróleo/estadística & datos numéricos , Suelo/química , Análisis Espacial , Espectroscopía Infrarroja Corta
7.
J Environ Qual ; 39(4): 1378-87, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20830926

RESUMEN

In the United States, petroleum extraction, refinement, and transportation present countless opportunities for spillage mishaps. A method for rapid field appraisal and mapping of petroleum hydrocarbon-contaminated soils for environmental cleanup purposes would be useful. Visible near-infrared (VisNIR, 350-2500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, nondestructive, proximal-sensing technique that has proven adept at quantifying soil properties in situ. The objective of this study was to determine the prediction accuracy of VisNIR DRS in quantifying petroleum hydrocarbons in contaminated soils. Forty-six soil samples (including both contaminated and reference samples) were collected from six different parishes in Louisiana. Each soil sample was scanned using VisNIR DRS at three combinations of moisture content and pretreatment: (i) field-moist intact aggregates, (ii) air-dried intact aggregates, (iii) and air-dried ground soil (sieved through a 2-mm sieve). The VisNIR spectra of soil samples were used to predict total petroleum hydrocarbon (TPH) content in the soil using partial least squares (PLS) regression and boosted regression tree (BRT) models. Each model was validated with 30% of the samples that were randomly selected and not used in the calibration model. The field-moist intact scan proved best for predicting TPH content with a validation r2 of 0.64 and relative percent difference (RPD) of 1.70. Because VisNIR DRS was promising for rapidly predicting soil petroleum hydrocarbon content, future research is warranted to evaluate the methodology for identifying petroleum contaminated soils.


Asunto(s)
Monitoreo del Ambiente , Petróleo/análisis , Contaminantes del Suelo/química , Suelo/análisis , Espectroscopía Infrarroja Corta/métodos , Modelos Logísticos , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA