Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Endocrinol ; 261(1)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305305

RESUMEN

Metabolic syndrome (MetS) is an increasing global health threat and strong risk factor for type 2 diabetes (T2D). MetS causes both hyperinsulinemia and islet size overexpansion, and pancreatic ß-cell failure impacts insulin and proinsulin secretion, mitochondrial density, and cellular identity loss. The low-density lipoprotein receptor knockout (LDLr-/-) model combined with high-fat diet (HFD) has been used to study alterations in multiple organs, but little is known about the changes to ß-cell identity resulting from MetS. Osteocalcin (OC), an insulin-sensitizing protein secreted by bone, shows promising impact on ß-cell identity and function. LDLr-/- mice at 12 months were fed chow or HFD for 3 months ± 4.5 ng/h OC. Islets were examined by immunofluorescence for alterations in nuclear Nkx6.1 and PDX1 presence, insulin-glucagon colocalization, islet size and %ß-cell and islet area by insulin and synaptophysin, and mitochondria fluorescence intensity by Tomm20. Bone mineral density (BMD) and %fat changes were examined by Piximus Dexa scanning. HFD-fed mice showed fasting hyperglycemia by 15 months, increased weight gain, %fat, and fasting serum insulin and proinsulin; concurrent OC treatment mitigated weight increase and showed lower proinsulin-to-insulin ratio, and higher BMD. HFD increased %ß and %islet area, while simultaneous OC-treatment with HFD was comparable to chow-fed mice. Significant reductions in nuclear PDX1 and Nkx6.1 expression, increased insulin-glucagon colocalization, and reduction in ß-cell mitochondria fluorescence intensity were noted with HFD, but largely prevented with OC administration. OC supplementation here suggests a benefit to ß-cell identity in LDLr-/- mice and offers intriguing clinical implications for countering metabolic syndrome.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Células Secretoras de Insulina , Islotes Pancreáticos , Síndrome Metabólico , Animales , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucagón/metabolismo , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Lipoproteínas LDL , Síndrome Metabólico/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocalcina/metabolismo , Proinsulina/metabolismo , Aumento de Peso
2.
Phytother Res ; 30(4): 671-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26848139

RESUMEN

Sleep deprivation (SD) is an experience of inadequate or poor quality of sleep that may produce significant alterations in multiple neural systems. Centella asiatica (CA) is a psychoactive medicinal herb with immense therapeutic potential. The present study was designed to explore the possible nitric oxide (NO) modulatory mechanism in the neuroprotective effect of CA against SD induced anxiety like behaviour, oxidative damage and neuroinflammation. Male laca mice were sleep deprived for 72 h, and CA (150 and 300 mg/kg) was administered alone and in combination with NO modulators for 8 days, starting five days before 72-h SD exposure. Various behavioural (locomotor activity, elevated plus maze) and biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels and superoxide dismutase activity), neuroinflammation marker (TNF-alpha) were assessed subsequently. CA (150 and 300 mg/kg) treatment for 8 days significantly improved locomotor activity, anti-anxiety like effect and attenuated oxidative damage and TNF α level as compared to sleep-deprived 72-h group. Also while the neuroprotective effect of CA was increased by NO antagonists, it was diminished by NO agonists. The present study suggests that NO modulatory mechanism could be involved in the protective effect of CA against SD-induced anxiety-like behaviour, oxidative damage and neuroinflammation in mice.


Asunto(s)
Ansiedad/tratamiento farmacológico , Centella/química , Fármacos Neuroprotectores/farmacología , Óxido Nítrico/metabolismo , Privación de Sueño/complicaciones , Triterpenos/farmacología , Acetilcolinesterasa/metabolismo , Animales , Ansiedad/complicaciones , Conducta Animal/efectos de los fármacos , Catalasa/metabolismo , Proteínas Ligadas a GPI/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Nitritos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA